K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

Giải bài tập Toán 11 | Giải Toán lớp 11

a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)

=> Tam giác ABD cân tại A. Lại có góc A= 60o

=> Tam giác ABD đều.

Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.

* Gọi H là tâm của tam giác ABD

=>SH ⊥ (ABD)

*Gọi O là giao điểm của AC và BD.

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

2 tháng 3 2017

a) Gọi O là tâm của hình thoi, ta có AC ⊥ BD tại O

Vì SA = SC nên SO ⊥ AC.

Do đó AC vuông góc với mặt phẳng (SBD)

Ta suy ra mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD).

b) Ba tam giác SAC, BAC, DAC bằng nhau ( c.c.c) nên ta suy ra OS = OB = OD. Vậy tam giác SBD vuông tại S.

1 tháng 9 2017

Giải bài 6 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 114 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 6 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 114 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

10 tháng 9 2017

 

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC