K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

 

13 tháng 1 2017

29 tháng 4 2018

Đáp án B

Phương pháp:

Xác định góc giữa hai mặt phẳng (α;β)

- Tìm giao tuyến Δ của (α;β)

- Xác định 1 mặt phẳng γ ⊥ Δ

- Tìm các giao tuyến a = α∩γ, b = β ∩ γ

- Góc giữa hai mặt phẳng (α;β):(α;β) = (a;b)

 

Cách giải:

Gọi I, J lần lượt là trung điểm của AB, CD.

Tam giác SAB cân tại S ⇒ SI ⊥ AB

 

Vì mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD) nên SI ⊥ (ABCD)

10 tháng 9 2018

Chọn D

Gọi H là trung điểm của AB.

Do đó: 

Xét tam giác vuông BHC:

Xét tam giác vuông SHC:

Suy ra: 

14 tháng 8 2017

1 tháng 5 2019

Đáp án A

26 tháng 1 2017

Chọn D

28 tháng 9 2019

Gọi O là giao điểm của AC và BD.

ABCD là hình thoi ⇒ AC ⊥ BD,

Vì O là trung điểm của AC, BD nên:

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0