Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi O = A C ∩ B D ⇒ V S . A B C D = a 3 3 ,
Vì O M / / S D ⇒ N D / / O M ⇒ N D / / M A C
Vì d N , A M C = d D , A M C = d B , A M C ⇒ V N . A M C = V D . M A C = V B . M A C = 1 4 V S . A B C D = a 3 12
Chọn D.
Phương pháp:
+ Chứng minh: O là tâm mặt cầu ngoại tiếp tứ diện CMNP (với O là tâm của hình vuông ABCD)
Từ giả thiết ta có AB = a; SA = a 2 ; SB = a 3 2
∆ A B C vuông tại S ⇒ S H = A B 2 ⇒ ∆ S . A H đều.
Gọi M là trung điểm của AH thì S M ⊥ A B
Do S A B ⊥ A B C D nên S M ⊥ A B C D
Vậy V = 1 3 S M . S K C D = a 3 32
Đáp án D
Đáp án B
Ta có: S B A ^ = 60 ∘ ⇒ S A = A B tan 60 ∘ = a 3
V A . A C D = 1 3 S A . S A C D = 1 3 . a 3 . a 2 2 = a 3 3 6
Lại có: V S . A M N V S . A C D = S M S C . S N S D = 1 4 ⇒ V S . A M N = a 3 3 24
Chọn C.
Phương pháp:
- Chứng minh tứ giác AEFH nội tiếp, từ đó tìm tâm đường tròn ngoại tiếp tam giác EHF .
- Tìm đỉnh hình nón và tính chiều cao, bán kính đáy rồi suy ra thể tích.
Cách giải:
Đáp án là A