K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
28 tháng 3 2016
Lời giải
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.
2) Ta có tam giác SAB đều nên SA =a3√2
suy ra V=13SABCD.SH=a33√6
Đáp án là B
Gọi H là trung điểm của AB . Tam giác SAB đều nên suy ra SH ⊥AB . Theo giả thiết (SAB) vuông góc với ( ABCD) và có giao tuyến AB nên suy ra SH ⊥ (ABCD) tại H . Có AH ∩ (SBD) = B nên
Trong ( ABCD) kẻ HI ⊥ BD tại I , kết hợp SH ⊥ (ABCD) ta suy ra
BD⊥ (SHI) => (SHI) ⊥ (SBD) , mà (SHI ) ∩ (SBD) = SI nên trong (SHI) nếu ta kẻ HK ⊥ SI tại K thì HK ⊥ (SBD) tại K , do đó HK = d (H,( SBD)) .
Ta tính được :
Tam giác SAB đều cạnh 2a nên SH=a 3
Tam giác SHI vuông tại H đường cao HK nên
Vậy khoảng cách từ A đến (SBD) là: a 3 2