Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong (SAD) do \(\dfrac{SM}{SA}\ne\dfrac{SP}{SD}\left(\dfrac{1}{2}\ne\dfrac{3}{4}\right)\) nên MP không song song với AD
⇒ Giả sửa MP cắt AD tai E
⇒ E ∈ (ABCD)
Trong (ABCD) gọi K là giao điểm của EN và BC
Trong (ABCD) gọi O là giao điểm của AC và BD
⇒ SO ⊂ (SBD)
Gọi giao điểm của NK và AC là I
Trong (SAC) IM cắt SO tại H
Trong (SBD) DH cắt SB tại Q
⇒ Bla bla bla gì đó
⇒ Thiết diện cần tìm là ngũ giác MPNKQ
Lời giải:
Gọi $Q$ là điểm nằm trên $DC$ sao cho $AD\parallel PQ$
Khi đó: $MN\parallel AD\parallel PQ$ nên $Q\in (MNP)$
$(MNPQ)$ chính là thiết diện của hình chóp cắt bởi $(MNP)$
Giờ ta cần tìm diện tích hình thang $MNPQ$
$SA=SD; DB=SC; AB=CD$ nên $\triangle SAB=\triangle SDC$
Tương ứng ta có $MP=NQ$
$MN=\frac{AD}{2}=\frac{3a}{2}$
$PQ=AD=3a$
$\Rightarrow MNPQ$ là hình thang cân.
Áp dụng định lý cos:
$\cos \widehat{SAB}=\frac{SA^2+AB^2-SB^2}{2SA.AB}=\frac{MA^2+AP^2-MP^2}{2MA.AP}$
$\Leftrightarrow \frac{9a^2+9a^2-27a^2}{2.3a.3a}=\frac{\frac{9}{4}a^2+4a^2-MP^2}{2.\frac{3}{2}a.2a}$
$\Rightarrow MP^2=\frac{37}{4}a^2$
$\Rightarrow h_{MNPQ}=\sqrt{MP^2-(\frac{PQ-MN}{2})^2}=\frac{\sqrt{139}}{4}a$
Diện tích thiết diện:
$S=\frac{MN+PQ}{2}.h=\frac{9\sqrt{139}}{16}a^2$
Kẻ SO vuông góc (ABCD)
\(AM\subset\left(P\right)\)trong mp(SAC)
Gọi AM giao SD=I
Trong mp(SBD) qua I kẻ đường song song với BD cắt SB tại F, cắt SD tại E
=>Thiết diện cần tìm là tứ giác AEMF
Trong mp (SAB), qua M kẻ đường thẳng song song SB cắt AB tại G \(\Rightarrow G\in\left(P\right)\)
Trong mp (SAC), qua M kẻ đường thẳng song song AC cắt SC tại E \(\Rightarrow E\in\left(P\right)\)
Trong mp (ABCD), qua G kẻ đường thẳng song song AC, lần lượt cắt BC tại F và AD kéo dài tại H
\(\Rightarrow F;H\in\left(P\right)\)
Trong mp (SAD), nối HM kéo dài cắt SD tại I
\(\Rightarrow\) Ngũ giác EFGMI là thiết diện của (P) và chóp
Trong mp (SAB) nối MN kéo dài cắt AB tại E
Trong mp (ABCD), nối EQ cắt AD tại F và cắt BC tại G
Trong mp (SBC), nối GN cắt SC tại H
\(\Rightarrow\) Đa giác MNHQF là thiết diện của chóp và (MNQ)