K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

+ Xác định góc của SC với (SAD).

Hạ CE ⊥ AD, ta có E là trung điểm AD và CE ⊥ (SAD) nên ∠(CSE) = 30 o .

∠(CSE) cũng chính là góc giữa SC và mp(SAD).

Trong ΔCSE, ta có:

S E   =   C E . tan 60 o   =   a 3   ⇒   S A   =   S E 2 -   A E 2   =   3 a 2   -   a 2   =   a 2 .

Nhận xét

Gọi M, N lần lượt là trung điểm của AB và AE.

Ta có MN // BE nên MN // CD. Như vậy MN // (SCD). Ta suy ra

d(M,(SCD)) = d(N,(SCD)).

Mà DN/DA = 3/4 nên d(N,(SCD)) = 3/4 d(A,(SCD))

+ Xác định khoảng cách từ A đến (SCD).

Vì vậy tam giác ACD vuông cân tại C nên CD vuông góc với AC.

CD ⊥ AC & CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ (SCD) ⊥ (SAC).

Hạ AH ⊥ SC, ta có AH ⊥ (SCD).

20 tháng 5 2022

S A B C D H O M N P Q K E I

a/ 

Ta có

\(CB\perp AB\) (ABCD là hình vuông)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp CB\)

\(\Rightarrow CB\perp\left(SAB\right)\) => CB=a là khoảng cách từ C đến mp (SAB)

b/ 

Trong mp (SAD) dựng đường thẳng vuông góc với SD cắt SD tại H

Ta có

\(CD\perp AD\) (ABCD là hình vuông)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\)

\(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp AH\)

Mà \(AH\perp SD\)

\(\Rightarrow AH\perp\left(SCD\right)\) => AH là khoảng cách từ A đến mp (SCD)

Xét tg vuông SAD có

\(SD=\sqrt{SA^2+AD^2}=\sqrt{2a^2+a^2}=a\sqrt{3}\) (Pitago)

Ta có

\(AD^2=DH.SD\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow DH=\dfrac{AD^2}{SD}=\dfrac{a^2}{a\sqrt{3}}=\dfrac{a\sqrt{3}}{3}\)

Xét tg vuông ADH có

\(AH=\sqrt{AD^2-DH^2}\) (Pitago)

\(\Rightarrow AH=\sqrt{a^2-\dfrac{a^2}{3}}=\dfrac{a\sqrt{6}}{3}\)

c/ Trong mp (ABCD) Qua O dựng đường thẳng //CD cắt AD tại M và BC tại N => MN//CD (1)

Trong mp (SAD) dựng đường thẳng // AH cắt SD tại Q => MQ // AH

TRong mp (SCD) qua Q dựng đường thẳng //CD cắt SC tại P => QP // CD (2)

Từ (1) và (2) => MN // PQ => M; N; P; Q cùng thuộc 1 mặt phẳng

=> PQ là giao tuyến của mp (MNQP) với mp (SCD)

Trong mp (MNQP) qua O dựng đường thẳng // với MQ cắt QP tại K

Ta có

MQ//AH; OH// MQ => OK//AH

Mà \(AH\perp\left(SCD\right)\)

\(\Rightarrow OK\perp\left(SCD\right)\) => OK là khoảng cách từ O đến mp (SCD)

Xét tứ giác MQKO có

MQ//OK; QP//MN => MQKO là hình bình hành => OK = MQ

Xét tg ACD có

OA=OC (t/c đường chéo hình vuông)

MO//CD

=> MA=MD (trong tg đường thẳng đi qua trung điểm của 1 cạnh // với cạnh thứ 2 thì đi qua trung điểm cạnh còn lai)

Xét tg ADH có

MA=MD (cmt); MQ//AH => QD = QH (trong tg đường thẳng đi qua trung điểm của 1 cạnh // với cạnh thứ 2 thì đi qua trung điểm cạnh còn lai)

=> MQ là đường trung bình của tg ADH

\(\Rightarrow OK=MQ=\dfrac{AH}{2}=\dfrac{1}{2}.\dfrac{a\sqrt{6}}{3}=\dfrac{a\sqrt{6}}{6}\)

d/

Trong mp (SCD) qua H dựng đường thẳng //CD cắt SC tại E => HE//CD

Ta có

AB // CD (Hai cạnh đối hình vuông)

HE // CD

=> AB//HE => A; B; H; E cùng thuộc một mặt phẳng

Trong mp (AHEB) qua e Dựng đường thẳng // AH cắt AB tại I

Ta có 

AH//IE; AB//HE => AHEB là hình bình hành => IE=AH

Ta có

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\)

\(AB\perp AD\) (ABCD là hình vuông)

=> \(AB\perp\left(SAD\right)\Rightarrow AB\perp AH\)

Mà AH//IE

\(\Rightarrow AB\perp IE\) (1)

Ta có

\(AH\perp\left(SCD\right)\) (cmt); mà AH//IE \(\Rightarrow IE\perp\left(SCD\right)\Rightarrow IE\perp SC\) (2)

Từ (1) và (2) => IE là khoảng cách giữa AB và SC

\(\Rightarrow IE=AH=\dfrac{a\sqrt{6}}{3}\)

 

 

 

 

 

 

NV
21 tháng 4 2021

Gọi G là trọng tâm SBC và M là trung điểm BC

\(\Rightarrow GM=\dfrac{1}{3}SM\Rightarrow d\left(G;\left(ABCD\right)\right)=\dfrac{1}{3}d\left(S;\left(ABCD\right)\right)=\dfrac{1}{3}SA=\dfrac{a}{3}\)

21 tháng 4 2021

em cảm ơn thầy

4 tháng 7 2017

Đáp án D

1: AC=căn a^2+a^2=a*căn 2

=>SC=căn SA^2+AC^2=a*căn 8

SB=căn AB^2+SA^2=a*căn 7

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

=>SB vuông góc BC

NV
16 tháng 4 2022

a.

Gọi H là trung điểm AB \(\Rightarrow SH\perp AB\Rightarrow SH\perp\left(ABCD\right)\) \(\Rightarrow SH\perp CD\)

Gọi E là trung điểm CD \(\Rightarrow HE||BC\Rightarrow HE\perp CD\)

\(\Rightarrow CD\perp\left(SHE\right)\)

Từ H kẻ \(HF\perp SE\)

\(\Rightarrow HF\perp\left(SCD\right)\Rightarrow HF=d\left(H;\left(SCD\right)\right)\)

\(SH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a), \(HE=BC=a\)

Hệ thức lượng: \(HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{21}}{7}\)

Do \(AH||CD\Rightarrow AH||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(H;\left(SCD\right)\right)=\dfrac{a\sqrt{21}}{7}\)

b.

Theo tính chất trọng tâm, ta có \(GS=\dfrac{2}{3}HS\)

Mà \(HG\cap\left(SCD\right)=S\Rightarrow d\left(G;\left(SCD\right)\right)=\dfrac{2}{3}d\left(H;\left(SCD\right)\right)=\dfrac{2a\sqrt{21}}{21}\)

NV
16 tháng 4 2022

c.

Từ H kẻ \(HK\perp SA\)

Do \(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\Rightarrow SH\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)

\(\Rightarrow AD\perp HK\)

\(\Rightarrow HK\perp\left(SAD\right)\Rightarrow HK=d\left(H;\left(SAD\right)\right)\)

Hệ thức lượng: \(HK=\dfrac{SH.AH}{\sqrt{SH^2+AH^2}}=\dfrac{a\sqrt{3}}{4}\)

Do \(BC||AD\Rightarrow BC||\left(SAD\right)\Rightarrow d\left(BC;SD\right)=d\left(BC;\left(SAD\right)\right)=d\left(B;\left(SAD\right)\right)\)

Mà \(\left\{{}\begin{matrix}BH\cap\left(SAD\right)=A\\BA=2HA\end{matrix}\right.\)

\(\Rightarrow d\left(BC;SD\right)=d\left(B;\left(SAD\right)\right)=2d\left(H;\left(SAD\right)\right)=\dfrac{a\sqrt{3}}{2}\)

NV
8 tháng 5 2023

a.

\(\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\Rightarrow SO\perp AC\\AC\perp BD\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) 

\(\Rightarrow AC\perp\left(SBD\right)\)

Mà \(AC\in\left(SAC\right)\Rightarrow\left(SAC\right)\perp\left(SBD\right)\)

b.

\(SO\perp\left(ABCD\right)\Rightarrow OC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCO}\) là góc giữa SC và (ABCD)

\(OC=\dfrac{1}{2}AC=a\sqrt{2}\)

\(tan\widehat{SCO}=\dfrac{SO}{OC}=\sqrt{3}\Rightarrow\widehat{SCO}=60^0\)

c.

Gọi E là trung điểm CD, từ O kẻ \(OF\perp SE\)

OE là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=a\\OE||BC\Rightarrow OE\perp CD\end{matrix}\right.\)

\(\Rightarrow CD\perp\left(SOE\right)\)\(\Rightarrow CD\perp OF\)

\(\Rightarrow OF\perp\left(SCD\right)\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)

Do \(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)=2OF\)

Hệ thức lượng: \(OF=\dfrac{OE.SO}{\sqrt{OE^2+SO^2}}=...\)

NV
8 tháng 5 2023

loading...

NV
11 tháng 3 2022

25.

\(\lim\dfrac{3.5^n+7.7^n+9}{6.5^n+9.7^n-3}=\lim\dfrac{7^n\left[3\left(\dfrac{5}{7}\right)^n+7+9.\left(\dfrac{1}{7}\right)^n\right]}{7^n\left[6\left(\dfrac{5}{7}\right)^n+9-3\left(\dfrac{1}{7}\right)^n\right]}\)

\(=\lim\dfrac{3\left(\dfrac{5}{7}\right)^n+7+9\left(\dfrac{1}{7}\right)^n}{6\left(\dfrac{5}{7}\right)^n+9-3\left(\dfrac{1}{7}\right)^n}=\dfrac{3.0+7+9.0}{6.0+9-3.0}=\dfrac{7}{9}\)

26.

\(\lim\left(n-\sqrt{n^2-4n}\right)=\lim\dfrac{\left(n-\sqrt{n^2-4n}\right)\left(n+\sqrt{n^2-4n}\right)}{n+\sqrt{n^2-4n}}\)

\(=\lim\dfrac{4n}{n+\sqrt{n^2-4n}}=\lim\dfrac{4n}{n\left(1+\sqrt{1-\dfrac{4}{n}}\right)}\)

\(=\lim\dfrac{4}{1+\sqrt{1-\dfrac{4}{n}}}=\dfrac{4}{1+\sqrt{1-0}}=2\)

NV
11 tháng 3 2022

26.

\(u_1=5\)

\(u_n=405=u_1.q^{n-1}\Rightarrow q^{n-1}=\dfrac{405}{5}=81\)

\(\Rightarrow q^n=81q\)

Do \(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}\Rightarrow605=\dfrac{5\left(1-81q\right)}{1-q}\)

\(\Rightarrow605-605q=5-405q\)

\(\Rightarrow q=3\)