K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có ngay S, M là hai điểm chung của (SBM) và (SCD) nên (SBM) ∩ (SCD) = SM

b) M là điểm chung thứ nhất của (AMB) và (SCD)

Gọi I = AB ∩ CD

Ta có: I ∈ AB ⇒ I ∈ (ABM)

Mặt khác: I ∈ CD ⇒ I ∈ (SCD)

Nên (AMB) ∩ (SCD) = IM.

c) Gọi J = IM ∩ SC.

Ta có: J ∈ SC ⇒ J ∈ (SAC) và J ∈ IM ⇒ J ∈ (ABM).

Hiển nhiên A ∈ (SAC) và A ∈ (ABM)

Vậy (SAC) ∩ (ABM) = AJ

a: BD giao AC tại O

S thuộc (SBD) giao (SAC)

=>(SBD) giao (SAC)=SO

Gọi giao của SO và KH là G

\(\left\{{}\begin{matrix}G\in KH\subset\left(KHC\right)\\G\in SO\subset\left(SAC\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}C\in\left(KHC\right)\\C\in\left(SAC\right)\end{matrix}\right.\)

=>(KHC) giao (SAC)=CG

b: Chọn mp (SAC) có chứa SA
(SAC) giao (KHC)=CG

=>I=SA giao CG

c: Chọn mp (ABCD) có chứa AB

(ABCD) cắt (KHC)=HC

=>E=AB giao HC

2 tháng 8 2019

Giải bài 10 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) SM, CD cùng thuộc (SCD) và không song song.

Gọi N là giao điểm của SM và CD.

⇒ N ∈ CD và N ∈ SM

Mà SM ⊂ (SMB)

⇒ N ∈ (SMB)

⇒ N = (SMB) ∩ CD.

b) N ∈ CD ⊂ (ABCD)

⇒ BN ⊂ (ABCD)

⇒ AC; BN cùng nằm trong (ABCD) và không song song

Gọi giao điểm của AC và BN là H.

+ H ∈ AC ⊂ (SAC)

+ H ∈ BN ⊂ (SBM)

⇒ H ∈ (SAC) ∩ (SBM)

Dễ dàng nhận thấy giao điểm thứ hai của (SAC) và (SBM) là S

⇒ (SAC) ∩ (SBM) = SH.

c) Trong mp(SBM), gọi giao điểm của BM và SH là I, ta có:

I ∈ BM

I ∈ SH ⊂ (SAC).

 

⇒ I = BM ∩ (SAC).

) Trong mp(SAC), gọi giao điểm của AI và SC là P.

+ P ∈ AI, mà AI ⊂ (AMB) ⇒ P ∈ (AMB)

⇒ P = (AMB) ∩ SC.

Lại có P ∈ SC, mà SC ⊂ (SCD) ⇒ P ∈ (SCD).

⇒ P ∈ (AMB) ∩ (SCD).

Lại có: M ∈ (SCD) (gt)

⇒ M ∈ (MAB) ∩ (SCD)

Vậy giao điểm của (MAB) và (SCD) là đường thẳng MP.

31 tháng 3 2017

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

7 tháng 11 2016

Đường thẳng và mặt phẳng trong không gian, Quan hệ song songĐường thẳng và mặt phẳng trong không gian, Quan hệ song songĐường thẳng và mặt phẳng trong không gian, Quan hệ song song