Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không thể giải được, có cách giải quyết là cậu chứng minh 2 điểm đó nằm trong 2 tam giác nội tiếp đường tròn thì sẽ thuộc đường tròn
Do ABCD là hình thoi \(\Rightarrow\Delta BCD\) cân tại C
Mà \(C=60^0\Rightarrow\Delta BCD\) đều
Hoàn toàn tương tự, ta có tam giác ABD đều
\(\Rightarrow AB=BC=CD=DA=BD\) (1)
Gọi O là giao điểm 2 đường chéo \(\Rightarrow OA\perp OB\)
Trong tam giác vuông OAB, do E là trung điểm AB nên OE là trung tuyến ứng với cạnh huyền
\(\Rightarrow OE=\dfrac{1}{2}AB\) (2)
Mà O là trung điểm BD (tính chất hình thoi) \(\Rightarrow OB=\dfrac{1}{2}BD\) (3)
(1);(2);(3) \(\Rightarrow OE=OB\)
Hoàn toàn tương tự, ta có:
\(OE=OB=OF=OG=OD=OH\)
\(\Rightarrow\) Các điểm E, B, F, G, D, H cùng thuộc 1 đường tròn tâm O bán kính OB
a) Chọn điểm O là giao điểm của 2 đường chéo của hình chữ nhật ABCD
⇒ PO là đường trung bình của △ CAM
⇒ PO // AM ⇒ BD//AM
⇒ Tứ giác AMDB là hình thang
b) Từ a ta có: có AM // BD
⇒ \(\widehat{A_1}=\widehat{B_1}\) ( đồng vị )
Mà △ OAB cân tại O ( vì ABCD là hình chữ nhật )
⇒ \(\widehat{A_2}=\widehat{B_1}\)
⇒ \(\widehat{A_1}=\widehat{A_2}\) \(\left(1\right)\)
Gọi I là giao điểm của 2 đường chéo của hình chữ nhật AEMF
⇒ △ IEA cân tại I
⇒ \(\widehat{E_1}=\widehat{A_1}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ⇒ \(\widehat{E_1}=\widehat{A_1}\) ( ở vị trí đồng vị )
⇒ EF // AC \(\left(3\right)\)
Mặt khác IP là đường trung bình của △ MAC ( do I,P là trung điểm của AM và BD )
⇒ IP // AC \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) ⇒ EF // IP ⇒ Ba điểm E, F, P thẳng hàng
c) Xét△ MAF và △ DBA có:
\(\widehat{MFA}=\widehat{DAB}\) \(=90^o\)
\(\widehat{A_1}=\widehat{B_1}\) ( cmt ) ; \(\widehat{A_1}=\widehat{M_1}\) ( so le trong )
⇒ \(\widehat{B_1}=\widehat{M_1}\)
⇒△ MAF ∼ △ DBA ( g - g )
⇒ \(\dfrac{MF}{DA}=\dfrac{AF}{BA}\) ⇒ \(\dfrac{MF}{AF}=\dfrac{DA}{BA}\) ( không đổi )
Xét ΔABD có AB=AD và góc BAD=60 độ
nên ΔABD đều
Ta có: ΔDAB cân tại D
mà DE là đường trung tuyến
nên DE vuông góc với BE
=>E nằm trên đường tròn đường kính BD(1)
Ta có:ΔBAD cân tại B
ma BH là đường trung tuyến
nên BH vuông góc với HD
=>H nằm trên đường tròn đường kính BD(2)
Xét ΔCBD có CB=CD và góc BCD=60 độ
nên ΔCBD đều
Ta có: ΔBDC cân tại D
mà DF là đường trung tuyến
nen DF vuông góc với BF
=>F nằm trên đường tròn đường kính BD(3)
Ta có: ΔBDC cân tại B
mà BG là đường trung tuyến
nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)
Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn