K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BMDN có

BN//DM

BN=DM

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

b: Ta có: BMDN là hình bình hành

nên BD cắt MN tại trung điểm của mỗi đường(1)

Ta có: ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,BD,MN đồng quy

4 tháng 1 2023

quên cách làm mất rồi...

4 tháng 1 2023

khác gì nhaubucminh

 

22 tháng 12 2019

c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:

∠POB = ∠QOD∠ (đối đỉnh),

OB = OD

∠PBO = ∠QDO (so le trong).

Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ

Lại có BP // DQ nên tứ giác PBQD là hình bình hành

Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.

12 tháng 10 2019

d) Gọi F là giao điểm của BK và QC. Ta có O là trung điểm của BD và OQ // BK (gt) nên Q là trung điểm của DF.

Lại có QK // BD (gt); Q là trung điểm của DF ⇒ K là trung điểm của BF.

CK là trung tuyến của tam giác vuông BCF ⇒ CK = BK = BC/2.

Ta có QK là đường trung bình của tam giác

⇒ QK = BO = BD/2; QK // BO

⇒ Tứ giác OBKQ là hình bình hành

Mặt khác ∠(OBQ) = 90o ⇒ OBKQ là hình chữ nhật

⇒ ∠(OBK) = 90o

Xét ΔOCK và ΔOBK có

CK chung

OC = OB (tính chất đường chéo hình chéo hình chữ nhật)

CK = BK (cmt)

Vậy ΔOCK = ΔOBK (c.c.c) ⇒ ∠OCK = ∠OBK = 90o hay AC ⊥ CK.