Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\widehat{ABC}=\widehat{ADC}\) và AD = BC = b = 7,25cm vì ABCD là hình bình hành.
Xét hai tam giác ADF và CBE ta có:
\(\widehat{ABC}=\widehat{ADC}\) (cmt)
AD = BC (cmt)
\(\widehat{DAF}=\widehat{BCE}\) (2 góc so le trong)
Vậy \(\Delta ADF=\Delta CBE\) (g-c-g).
=> AF = CE.
Cho AF = CE = x.
Áp dụng tính chất của đường phân giác BE trong tam giác ABC ta có:
\(\dfrac{AB}{BC}=\dfrac{AE}{CE}=\dfrac{AF+FE}{CE}\)
=> \(\dfrac{a}{b}=\dfrac{x+m}{x}=>x=\dfrac{mb}{a-b}\)= \(\dfrac{3,45.7,25}{12,5-7,25}=\dfrac{667}{140}\)
=> AC = \(2x+m=2.\dfrac{667}{140}+3,45=\dfrac{1817}{140}\approx12,98\)
Vậy AC \(\approx12,98\) cm.
Vì ABCD là hình bình hành nên ∠ ABC = ∠ ADC.
Mặt khác, BE và DF lần lượt là phân giác của các góc B và D, do đó suy ra ∠ ADF = ∠ CBE
Mặt khác, ta có: AD = CB = b;
∠ DAF = ∠ BCE (so le trong)
Suy ra: △ ADF = △ CBE (g.c.g)
⇒ AF = CE
Đặt AF = CE = x
Theo tính chất của đường phân giác BE trong tam giác ABC, ta có:
Thay số, tính trên máy tính điện tử cầm tay ta được:
hướng dẫn thui:
theo tính c hất đường phân giác \(\frac{CN}{AN}=\frac{DC}{AD}=\frac{40.8}{17}\)
\(\frac{AM}{MC}=\frac{AB}{AC}=\frac{40.8}{17}\)\(\Rightarrow\frac{AM}{MC}=\frac{CN}{AN}=\frac{40.8}{17}\)
\(\Rightarrow\frac{AM+MC}{AN+MC}=\frac{40.8}{17}\)\(\Leftrightarrow\frac{2MN+AN+MC}{AN+MC}=\frac{40.8}{17}=\frac{12}{5}\)
\(\frac{2MN}{AC-MN}=\frac{12}{5}-1=\frac{7}{5}\Leftrightarrow\frac{2MN}{\frac{221}{5}-MN}=\frac{7}{5}\)(TÍNH AC DỰA THEO ĐỊNH LÝ PYTAGO)
\(\frac{10}{MN}=839.8-\frac{19}{5}MN\)\(\Rightarrow MN=12.8\left(cm\right)\)
Kẻ đường cao AH.
Ta có: B=2C mà B=HAC (cùng phụ với BAH)
=> HAC=2C
Vì HAC+C=90 độ (tam giác AHC vuông tại H)
2C+C=90 độ
=>3C=90 độ
=>C=30 độ
=> HAC=60 độ
Mà tam giác AHC vuông tại H nên AHC là nửa tam giác đều.
=> AH=AC/2=8/2=4cm
Áp dụng định lý Py-ta-go lần lượt vào 2 tam giác vuông: ABH và AHC
(bn tự tính tìm BH và HC)
Mà BC=BH+HC
(bạn tự tính rồi tìm ra kq)