K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

a: ABCD là hình chữ nhật

=>\(BD^2=BA^2+BC^2\)

=>\(BD^2=5^2+12^2=169\)

=>BD=13(cm)

b: Xét ΔADB vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot13=5\cdot12=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

c: \(\widehat{HDK}+\widehat{HBC}=90^0\)(ΔBDC vuông tại C)

\(\widehat{HIB}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)

mà \(\widehat{HBC}=\widehat{HBI}\left(I\in BC\right)\)

nên \(\widehat{HDK}=\widehat{HIB}\)

Xét ΔHDK vuông tại H và ΔHIB vuông tại H có

\(\widehat{HDK}=\widehat{HIB}\)

Do đó: ΔHDK đồng dạng với ΔHIB

=>\(\dfrac{HD}{HI}=\dfrac{HK}{HB}\)

=>\(HD\cdot HB=HK\cdot HI\)(1)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH^2=HD\cdot HB\left(2\right)\)

Từ (1) và (2) suy ra \(AH^2=HK\cdot HI\)

a: Ta có: AD=BC

mà BC=15cm

nên AD=15cm

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=15^2+8^2=289\)

hay BD=17(cm)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(AH\cdot BD=AB\cdot AD\)

\(\Leftrightarrow AH=\dfrac{8\cdot15}{17}=\dfrac{120}{17}\left(cm\right)\)

5 tháng 8 2020

Hình bạn tự vẽ nhé <3

a/ Xét tam giác ABD vuông tại A

\(\Leftrightarrow BD^2=AB^2+AD^2\) (Định lí Py ta go)

\(\Leftrightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+15^2}=17\)

Vậy....

b/ Xét tam giác ABD vuông tại A

Đường cao AH

\(\Leftrightarrow BD.AH=AB.AD\)

\(\Leftrightarrow AH=\frac{AB.AD}{BD}=\frac{8.15}{17}=\frac{120}{17}\)

Vậy....

14 tháng 6 2021

A D B C 8 15 H I M N

a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm 

Xét tam giác ABD vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABD 

\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)

14 tháng 6 2021

b, Xét tam giác AHB vuông tại H đường cao HI 

 \(AH^2=IA.AB\)( hệ thức lượng ) (1) 

Xét tam giác ABD vuông tại A đường cao AH 

\(AH^2=DH.BH\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )

14 tháng 10 2023

a: Bạn ghi lại đề nha bạn

b: ΔBAC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB=\sqrt{18^2-6.5^2}=\dfrac{7}{2}\sqrt{23}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\dfrac{281.75}{18}=\dfrac{1127}{72}\left(cm\right)\)

Xét ΔABC có HI//AC

nên \(\dfrac{HI}{AC}=\dfrac{BH}{BC}\)

=>\(\dfrac{HI}{6.5}=\dfrac{1127}{72}:18=\dfrac{1127}{1296}\)

=>\(HI\simeq5,65\left(cm\right)\)

ΔHAB vuông tại H có HI là đường cao

nên \(BI\cdot BA=BH^2\)

=>\(BI=\left(\dfrac{1127}{72}\right)^2:\dfrac{7}{2}\sqrt{23}=14,6\left(cm\right)\)

\(AI=AB-BI=3.5\sqrt{23}-14.6\simeq2,19\left(cm\right)\)

\(S_{AIHC}=\dfrac{1}{2}\left(HI+AC\right)\cdot AI\)

\(=\dfrac{1}{2}\cdot2.19\cdot\left(6.5+5.65\right)\simeq13,3\left(cm^2\right)\)

image

chúc bn hok tốt k mk nha

a: BD=17cm

b: \(AH=\dfrac{8\cdot15}{17}=\dfrac{120}{17}\left(cm\right)\)