Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ABCD là hình chữ nhật
=>AC=BD và AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔBDC có
O,E lần lượt là trung điểm của BD,BC
=>OE là đường trung bình cuả ΔBDC
=>OE//DC và OE=DC/2
OE//DC
DC\(\perp\)BC
Do đó: OE\(\perp\)BC
=>OM vuông góc BC
Xét tứ giác OBMC có
E là trung điểm chung của OM và BC
Do đó: OBMC là hình bình hành
mà OM\(\perp\)BC
nên OBMC là hình thoi
OE=DC/2
mà AB=CD(ABCD là hình chữ nhật)
nên OE=AB/2
mà \(OE=\dfrac{OM}{2}\)
nên AB=OM
OE//CD
AB//CD
Do đó: OE//AB
=>OM//AB
Xét tứ giác ABMO có
AB//MO
AB=MO
Do đó: ABMO là hình bình hành
=>AM cắt BO tại trung điểm của mỗi đường
mà I là trung điểm của BO
nên I là trung điểm của AM
=>A,I,M thẳng hàng
b: Xét tứ giác CFME có
\(\widehat{MFC}=\widehat{ECF}=\widehat{MEC}=90^0\)
=>CFME là hình chữ nhật
=>MF//CE và MF=CE
MF//CE
E\(\in\)BC
Do đó: BE//MF
BE=CE
CE=MF
Do đó: BE=MF
Xét tứ giác BMFE có
BE//MF
BE=MF
Do đó: BMFE là hình bình hành
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\)
=>AEMF là hình chữ nhật
b:
Ta có: MF\(\perp\)AD
DC\(\perp\)AD
Do đó: MF//DC
Ta có: AEMF là hình chữ nhật
=>\(\widehat{AEF}=\widehat{AMF}\)
mà \(\widehat{AMF}=\widehat{ACD}\)(hai góc đồng vị, MF//CD)
nên \(\widehat{AEF}=\widehat{ACD}\)
Ta có: ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường và AC=BD
=>O là trung điểm chung của AC và BD và AC=BD
=>OA=OB=OC=OD
Xét ΔACD vuông tại D và ΔCAB vuông tại B có
CA chung
AD=CB
Do đó: ΔACD=ΔCAB
=>\(\widehat{ACD}=\widehat{CAB}\)
mà \(\widehat{CAB}=\widehat{OAB}=\widehat{OBA}\)(ΔOAB cân tại O)
nên \(\widehat{ACD}=\widehat{ABD}\)
=>\(\widehat{AEF}=\widehat{ABD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên EF//BD