K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2023

loading...

SAMQ = \(\dfrac{2}{3}\)SABQ (vì hai tam giác có chung đường cao hạ từ đỉnh Q xuống đáy AB và AM = \(\dfrac{2}{3}\)AB)

SABQ  = \(\dfrac{1}{2}\)SABD ( vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AD và AQ = \(\dfrac{1}{2}\)AD)

SABD = \(\dfrac{1}{2}\)SABCD ( vì ABCD là hình chữ nhật)

⇒ SAMQ = \(\dfrac{2}{3}\) \(\times\) \(\dfrac{1}{2}\) \(\times\dfrac{1}{2}\) = \(\dfrac{1}{6}\) SABCD  = 96 \(\times\) \(\dfrac{1}{6}\) = 16 (cm2)

SDPQ = SCPN = \(\dfrac{1}{2}\)SCDN  = (vì hai tam giác có chung chiều cao hạ từ đỉnh N xuống đáy CD và CP = \(\dfrac{1}{2}\)CD)

SCDN = \(\dfrac{1}{2}\)SBCD ( Vì hai tam giác có chung chiều cao hạ từ đỉnh D xuống đáy BC và CN = \(\dfrac{1}{2}\) CB)

SBCD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật) 

⇒ SDPQ = SCPN = \(\dfrac{1}{2}\)\(\times\dfrac{1}{2}\times\dfrac{1}{2}\)SABCD  = 96 \(\times\)\(\dfrac{1}{8}\) = 12 (cm2)

BM = AB - AM = AB - \(\dfrac{2}{3}\)AB = \(\dfrac{1}{3}\)AB

SBMN = \(\dfrac{1}{3}\)SABN (Vì hai tam giác có chung đường cao hạ từ đỉnh N xuống đáy AB và BM = \(\dfrac{1}{3}\) AB)

SABN = \(\dfrac{1}{2}\)SABC (Vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BN = \(\dfrac{1}{2}\)BC)

SABC = \(\dfrac{1}{2}\) SABCD ( vì ABCD là hình chữ nhật)

⇒SBMN = \(\dfrac{1}{3}\)\(\times\)\(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{2}\)SABCD = 96 \(\times\) \(\dfrac{1}{12}\) = 8 (cm2)

SMNPQ  = SABCD - (SAMQ + SDPQ + SCPN + SBMN)  

SMNPQ = 96 - (16 + 12 + 12 + 8) = 48 (cm2)

Đáp số: 48 cm2

1 tháng 7 2023

48

TICK CHO MINH VỚI

24 tháng 6 2023

loading...

SAMQ = \(\dfrac{2}{3}\)SABQ (vì hai tam giác có chung chiều cao hạ từ đỉnh Q xuống đáy AB và AM  = \(\dfrac{2}{3}\) AB)

SABQ = \(\dfrac{1}{2}\)SABD (vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy  AD và AQ = \(\dfrac{1}{2}\)AD)

SABD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)

SAMQ = \(\dfrac{2}{3}\times\dfrac{1}{2}\times\dfrac{1}{2}\)SABCD = 216 \(\times\) \(\dfrac{1}{6}\) = 36 (cm2)

SBMN = \(\dfrac{1}{3}\)BMC (vì hai tam giác có chung chiều cao hạ từ điỉnh M xuống đáy BC và BN = \(\dfrac{1}{3}\)BC)

BM = AB - AM = AB - \(\dfrac{2}{3}\)AB = \(\dfrac{1}{3}\)AB

SBCM = \(\dfrac{1}{3}\)SACB (vì hai tam giâc có chung chiều cao hạ từ đỉnh C xuống đáy AB  và BM = \(\dfrac{1}{3}\)AB)

SABC = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)

SBMN = \(\dfrac{1}{3}\times\dfrac{1}{3}\times\dfrac{1}{2}\) = \(\dfrac{1}{18}\)SABCD = 216 \(\times\) 18 = 12 (cm2)

CN = BC - BN = BC  - \(\dfrac{1}{3}\)BC = \(\dfrac{2}{3}\)BC

SCPN = \(\dfrac{2}{3}\)SBPC (vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{2}{3}\)BC)

SPBC = \(\dfrac{1}{2}\)SBCD (vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy  CD và PC = \(\dfrac{1}{2}\)CD)

SBCD =  \(\dfrac{1}{2}\)SABCD (vì ABCD  là hình chữ nhật)

SCPN = \(\dfrac{2}{3}\times\)\(\dfrac{1}{2}\times\)\(\dfrac{1}{2}\)SABCD =\(\dfrac{1}{6}\)SABCD = 216 \(\times\) \(\dfrac{1}{6}\) = 36 (cm2)

SDPQ = \(\dfrac{1}{2}\)SDQC (vì hai tam giác có chung chiều cao hạ từ đỉnh  Q xuống đáy DC và DP = \(\dfrac{1}{2}\)DC)

SDQC  = \(\dfrac{1}{2}\)SACD (vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AD và DQ = \(\dfrac{1}{2}\)AD )

SACD = \(\dfrac{1}{2}\) SABCD (vì ABCD là hình chữ nhật)

SDPQ  = \(\dfrac{1}{2}\times\dfrac{1}{2}\times\dfrac{1}{2}\)SABCD  = 216 \(\times\) \(\dfrac{1}{8}\) = 27 (cm2)

Diện tích tứ giác MNPQ là:

216 - ( 36 + 12 + 36 + 27) = 105 (cm2)

Đáp số: 105 cm2

 

 

 

 

11 tháng 6 2023

SQAM = SQDP = \(\dfrac{1}{6}\) SABCD = 48 cm2

SMBN = SPNC = \(\dfrac{1}{12}\) SABCD = 24 cm2

Diện tích hình MNPQ là:

288 - (48 + 24) x 2 = 144 (cm2)

Đáp số: 144 cm2

11 tháng 6 2023

Kẻ 2 đường chéo của MNPQ lần lượt là MP; NQ

Vì AM =2/3 AB => MB = 1/3AB

=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP

=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD

 

Vì AM =2/3 AB => MB = 1/3AB

=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP

=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD

Vì AM =2/3 AB => MB = 1/3AB

=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP

=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD

Vì BN = NC ; DQ = QA

=> Vì BC =AD=> BN = NC = DQ = QA

=> Kẻ đường chéo thứ 2 từ N sang Q = Chiều dài của hcn ABCD

=> SMNPQ = NQ*MP : 2 

Mà NQ = AB và MP = BC

=>  SMNPQ = AB* BC : 2

Mà AB*BC= 288

=>  SMNPQ = 288 : 2

 SMNPQ = 144 (cm2)

26 tháng 6 2023

loading...

AM = BM = \(\dfrac{1}{2}\)AB; AQ = QD = \(\dfrac{1}{2}\) AD

SAMQ = \(\dfrac{1}{2}\)AM\(\times\)AQ =\(\dfrac{1}{2}\times\) \(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{8}\)SABCD = 240\(\times\)\(\dfrac{1}{8}\)=30(cm2)

DQ = QA = \(\dfrac{1}{2}\)AD; DP = PC = \(\dfrac{1}{2}\) DC

SDPQ =\(\dfrac{1}{2}\times\)DP\(\times\) DQ =\(\dfrac{1}{2}\) \(\times\)\(\dfrac{1}{2}\)AD\(\times\)\(\dfrac{1}{2}\)DC =\(\dfrac{1}{8}\)SABCD = 240\(\times\)\(\dfrac{1}{8}\)=30(cm2)

CN = BC - BN = BC - \(\dfrac{1}{3}\)BC = \(\dfrac{2}{3}\)BC

SCPN = \(\dfrac{1}{2}\)CP\(\times\)CN= \(\dfrac{1}{2}\)\(\times\) \(\dfrac{1}{2}\)CD \(\times\) \(\dfrac{2}{3}\) BC = \(\dfrac{1}{6}\)SABCD=240\(\times\dfrac{1}{6}\)=40 (cm2)

SBMN=\(\dfrac{1}{2}\) BM\(\times\)BN =\(\dfrac{1}{2}\times\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{3}\)BC=\(\dfrac{1}{12}\)SABCD=240\(\times\)\(\dfrac{1}{12}\)=20(cm2)

Diện tích tứ giác MNPQ là:

240 - (30 + 30 + 40 + 20) = 120(cm2)

Đáp số: 120 cm2

 

26 tháng 6 2023

loading...

SAMQ = \(\dfrac{1}{2}\)AM\(\times\)AQ  = \(\dfrac{1}{2}\times\) \(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{8}\)\(\times\)SABCD

SDPQ = \(\dfrac{1}{2}\)DQ\(\times\)DP   = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{2}\) AD\(\times\)\(\dfrac{1}{2}\)DP = \(\dfrac{1}{8}\) \(\times\) SABCD

CN    =   CB - BN     = CB - \(\dfrac{1}{3}\)CB = \(\dfrac{2}{3}\)CB

SCPN = \(\dfrac{1}{2}\)CP\(\times\)CN   =  \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{2}\) CD\(\times\)\(\dfrac{2}{3}\)CB = \(\dfrac{1}{6}\)SABCD

SBNM = \(\dfrac{1}{2}\)BN\(\times\)BM   = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{3}\)BC    = \(\dfrac{1}{12}\)SABCD

Diện tích tứ giác MNPQ bằng:  (1 - \(\dfrac{1}{8}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{6}\) - \(\dfrac{1}{12}\) )SABCD = \(\dfrac{1}{2}\)SABCD

Diện tích của tứ giác MNPQ là: 240\(\times\)\(\dfrac{1}{2}\) = 120 (cm2)

 

 

27 tháng 6 2023

A B C D M N P Q

\(S_{BMN}=\dfrac{1}{2}xBMxBN=\dfrac{1}{2}x\dfrac{AB}{4}x\dfrac{BC}{2}=\dfrac{1}{16}xS_{ABCD}\)

\(S_{CPN}=\dfrac{1}{2}xCNxCP=\dfrac{1}{2}x\dfrac{BC}{2}x\dfrac{CD}{2}=\dfrac{1}{8}xS_{ABCD}\)

\(S_{DPQ}=\dfrac{1}{2}xPDxDQ=\dfrac{1}{2}x\dfrac{CD}{2}x\dfrac{AD}{3}=\dfrac{1}{12}xS_{ABCD}\)

\(S_{AMQ}=\dfrac{1}{2}xAMxAQ=\dfrac{1}{2}x\dfrac{3xAB}{4}x\dfrac{2xAD}{3}=\dfrac{1}{4}xS_{ABCD}\)

\(\Rightarrow S_{MNPQ}=S_{ABCD}-\left(S_{BMN}+S_{CPN}+S_{DPQ}+S_{AMQ}\right)\)

Bạn tự thay số rồi tính nốt nhé

1 tháng 7 2023

240cm2 bạn ơi

 

1 tháng 7 2023

loading...

SAMQ   = \(\dfrac{1}{2}\)AM\(\times\)AQ = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{3}\)AB\(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{12}\)SABCD 

BM       = AB - AM = AB - \(\dfrac{1}{3}\)AB = \(\dfrac{2}{3}\)AB

SBMN    = \(\dfrac{1}{2}\)BM\(\times\)BN = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)AB\(\times\)\(\dfrac{1}{2}\)BC = \(\dfrac{1}{6}\)SABCD

SCPN   = \(\dfrac{1}{2}\)CN \(\times\) CP = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{1}{2}\)BC\(\times\)\(\dfrac{1}{3}\)CD = \(\dfrac{1}{12}\)SABCD

DP      = CD - CP = CD - \(\dfrac{1}{3}\)CD = \(\dfrac{2}{3}\)CD

SDPQ  =  \(\dfrac{1}{2}\)DP\(\times\)DQ = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)CD \(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{6}\)SABCD

SMNPQ = SABCD - (SAMQ  + SBMN + SCPN + SDPQ)

Phân số chỉ diện tích của tứ giác MNPQ là:

 1 - \(\dfrac{1}{12}\) - \(\dfrac{1}{6}-\dfrac{1}{12}-\dfrac{1}{6}\) = \(\dfrac{1}{2}\) (SACBD)

Diện tích của tứ giác MNPQ là: 

360 \(\times\) \(\dfrac{1}{2}\) = 180(cm2)

Đáp số: 180 cm2

 

 

 

 

 

 

 

 

23 tháng 6 2023

 Trước hết ta cần xem xét điều sau: Nếu 2 tam giác có chung đường cao thì tỉ số diện tích giữa 2 tam giác đó bằng tỉ số độ dài 2  cạnh đáy tương ứng.

 Điều này khá dễ thấy vì giả sử có hình vẽ trên thì \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{\dfrac{1}{2}\times AH\times BD}{\dfrac{1}{2}\times AH\times CD}=\dfrac{BD}{CD}\) 

 Tiếp đến, ta có tiếp điều sau: Cho tam giác ABC bất kì. Các điểm E, F lần lượt nằm trên các cạnh AC, AB. Khi đó \(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE\times AF}{AB\times AC}\) (tạm gọi đây là (*))

  Điều này trở nên dễ thấy nhờ điều ta mới đề cập đến ở trên. Vì \(\dfrac{S_{AEF}}{S_{ABE}}=\dfrac{AF}{AB}\)  và \(\dfrac{S_{ABE}}{S_{ABC}}=\dfrac{AE}{AC}\) nên nhân vế theo vế rồi rút gọn, ta được: \(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE\times AF}{AB\times AC}\).

 Bây giờ, ta quay lại bài toán chính.

Áp dụng (*) cho tam giác ABD với 2 điểm M, Q nằm trên AB, AD, ta được \(\dfrac{S_{AMQ}}{S_{ABD}}=\dfrac{AM}{AB}\times\dfrac{AQ}{AD}=\dfrac{2}{3}\times\dfrac{2}{3}=\dfrac{4}{9}\)   (1)

Tương tự, ta cũng có \(\dfrac{S_{BMN}}{S_{BAC}}=\dfrac{BM}{BA}\times\dfrac{BN}{BC}=\dfrac{1}{3}\times\dfrac{2}{3}=\dfrac{2}{9}\)    (2)

\(\dfrac{S_{CNP}}{S_{CBD}}=\dfrac{CN}{CB}\times\dfrac{CP}{CD}=\dfrac{1}{3}\times\dfrac{1}{2}=\dfrac{1}{6}\)      (3)

\(\dfrac{S_{DPQ}}{S_{DCA}}=\dfrac{DP}{DC}\times\dfrac{DQ}{DA}=\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{1}{6}\)       (4)

 Hơn nữa, nhận thấy rằng diện tích của 4 tam giác ABD, BAC, CBD và DCA đều bằng nhau và bằng \(\dfrac{1}{2}\) diện tích của hình chữ nhật ABCD nên cộng theo vế (1), (2), (3) và (4) suy ra:

 \(\dfrac{S_{AQM}+S_{BMN}+S_{CNP}+S_{DPQ}}{\dfrac{1}{2}S_{ABCD}}=1\), mà tổng diện tích của 4 tam giác AQM, BMN, CNP và DPQ chính bằng \(S_{ABCD}-S_{MNPQ}\) nên ta có \(\dfrac{S_{ABCD}-S_{MNPQ}}{\dfrac{1}{2}S_{ABCD}}=1\) \(\Leftrightarrow S_{ABCD}-S_{MNPQ}=\dfrac{1}{2}S_{ABCD}\) \(\Leftrightarrow S_{MNPQ}=\dfrac{1}{2}S_{ABCD}=\dfrac{1}{2}.496=216\left(cm^2\right)\)

Vậy \(S_{MNPQ}=216cm^2\)