Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADCE có
N là trung điểm của AC
N là trung điểm của DE
Do đó: ADCE là hình bình hành
mà \(\widehat{ADC}=90^0\)
nên ADCE là hình chữ nhật
b: Xét tứ giác ABDE có
AE//BD
AE=BD
Do đó: ABDE là hình bình hành
a: Xét tứ giác MNPQ có
A là trung điểm của MP
A là trung điểm của NQ
Do đó: MNPQ là hình bình hành
b: Xét tứ giác MPQI có
MI//QP
MI=QP
Do đó: MPQI là hình bình hành
mà \(\widehat{PMI}=90^0\)
nên MPQI là hình chữ nhật
c: Xét ΔNIB có
M là trung điểm của IN
MK//IB
Do đó: K là trung điểm của NB
=>NK=KB(1)
Xét ΔPMK có
A là trung điểm của MP
AB//MK
Do đó: B là trung điểm của PK
Suy ra: PB=BK(2)
Từ (1) và (2) suy ra KP=2KN
Hình bạn tự vẽ nha
a) CMR Tứ giác ABEC là hình bình hành
Vì ABCD là hcn (gt) => AB=CD và AB//CD (t/c hcn)
=> AB=CE và AB//CE ( CE= DC, E \(\in\) CD)
=> tứ giác ABEC là hình bình hành(dhnb)
b) BOCF là hình gì
Vì ABEC là hbh (cmt) => AC=BE và AB//BE 9T/c hbh)
=> 1/2 AC=1/2BE và OC//BF (1)
<=> OC= BF(2)
Từ (1) và (2) => BOCF là hbh (dhnb)
mà OB=OC (t/c đừng chéo hcn)
=> BOCF là hình thoi (dhnb)
c) DOFE là hình thang cân
Vì AC= BE ( ABEC là hbh)
mà AC =BD ( T/c hcn)
=> BE= BD => Tam giác BED cân tại B (đ/n)
=> BDE= BED (t/c tam giác cân) (1)
Vì C là trung điểm DE ( D đx E qua C) => BC là đường trung tuyến của tam giác ABC cân => BC là đương cao ( t/c các đường trong tam giác cân) => BC _l_ DE
mà BC_l_ OF (đg chéo hình thoi)
=> DE//OF ( từ _l_ -> //) (2)
Từ (1) và (2)=> OFDE là hình thang cân (dhnb hthang cân)
Bn tự vẽ hình nha
a, Xét tứ giác ABCD có
MA=MC=1/2AC( m là trung điểm AC-gt)
MB=MD=1/2BD(B đối D qua M-gt)
Mà BD cắt AC tại M
-> ABCD là hình bình hành
a) Do B và D đối xứng qua M
\(\Rightarrow\) M là trung điểm BD
Tứ giác ABCD có:
M là trung điểm AC (gt)
M là trung điểm BD (cmt)
\(\Rightarrow\) ABCD là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
b) Do ABCD là hình bình hành
\(\Rightarrow\) AB // CD và AB = CD
\(\Rightarrow\) AN // CD
Do B và N đối xứng nhau qua A
\(\Rightarrow AN=AB\)
Mà AB = CD (cmt)
\(\Rightarrow\) AN = CD
Do AB \(\perp\) AC (\(\Delta ABC\) vuông tại A)
\(\Rightarrow AN\perp AC\)
\(\Rightarrow\widehat{CAN}=90^0\)
Tứ giác ACDN có:
AN // CD (cmt)
AN = CD (cmt)
\(\Rightarrow ACDN\) là hình bình hành
Mà \(\widehat{CAN}=90^0\)
\(\Rightarrow ACDN\) là hình chữ nhật (hình bình hành có một góc vuông)
c) Gọi E là giao điểm của MN và BC
Do AK // MN (gt)
\(\Rightarrow AK\) // ME và AK // NE
\(\Delta BNE\) có
AK // NE
A là trung điểm BN
\(\Rightarrow\) K là trung điểm BE
\(\Rightarrow KB=KE\)
\(\Delta AKC\) có:
AK // ME (cmt)
M là trung điểm AC
\(\Rightarrow\) E là trung điểm CK
\(\Rightarrow\) KC = 2 KE
Mà KB = KE (cmt)
\(\Rightarrow\) KC = 2 KB
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
b: Hình bình hành AMND có AM=AD
nên AMND là hình thoi
c: Xét tứ giác ANKQ có
D là trung điểm của NQ
D là trung điểm của AK
Do đó: ANKQ là hình bình hành