Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pytago ta có:
\(AH^2+HB^2=AB^2\)
\(\Rightarrow\)\(HB^2=AB^2-AH^2\)
\(\Rightarrow\)\(HB^2=20^2-12^2=256\)
\(\Rightarrow\)\(HB=16\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BD\)
\(\Rightarrow\)\(BD=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BD=\frac{20^2}{16}=25\)
Áp dụng định lý Pytago ta có:
\(AB^2+AD^2=BD^2\)
\(\Rightarrow\)\(AD^2=BD^2-AB^2\)
\(\Rightarrow\)\(AD^2=25^2-20^2=225\)
\(\Rightarrow\)\(AD=15\)
Vậy cạnh còn lại = 15; đường chéo = 25
a: ΔABD vuông tại A
=>\(BD^2=AB^2+AD^2\)
=>\(BD^2=9^2+12^2=225\)
=>BD=15(cm)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot15=12\cdot9=108\)
=>AH=108/15=7,2(cm)
XétΔABD vuông tại A có \(sinBDA=\dfrac{AB}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)
nên \(\widehat{BDA}\simeq37^0\)
b: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH^2=HD\cdot HB\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=HD\cdot HB\)
c: Xét ΔHDN vuông tại H và ΔHMB vuông tại H có
\(\widehat{HDN}=\widehat{HMB}\left(=90^0-\widehat{DBC}\right)\)
Do đó: ΔHDN đồng dạng với ΔHMB
=>HD/HM=HN/HB
=>\(HM\cdot HN=HD\cdot HB=HA^2\)
b: Xét ΔADM vuông tại D có DH là đường cao ứng với cạnh huyền AM
nên \(AH\cdot AM=AD^2\left(1\right)\)
Xét ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền DB
nên \(DH\cdot DB=AD^2\left(2\right)\)
Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)
ΔADH vuông tại H
=> DH = √(AD²- AH²) = √(2²-√3²) = 1
Ta lại có : AD² = DH. DB
=> BD = AD²: DH = 2²:1= 4
ΔABD vuông tại A
=> AB = √(BD²- AD²) = √(4²-2²) = 2√3
Chu vi hcn ABCD là :
2(AB + AD)= 2(2+2√3)=4+4√3 (cm)
Hình tự vẽ nha bạn
Xét tam giác ABD vuông tại A (ABCD là hình chứ nhật nên góc A = 90 độ)
Áp dụng hệ thức lượng trong tam giác vuông
\(\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{1}{AH^2}\)
Thay số vào tính được AD = 15cm
Chu vi HCN = (20+15).2 = 70cm
Xét tam giác AHB vuông tại H có
\(AH^2+HB^2=AB^2\)( đl PYtago)
T/s \(12^2+HB^2=20^2\)
=>\(HB^2=20^2-12^2\)
=> \(HB^2=256\)
=> \(HB=16\)
Xét tam giác DAB vuông tại A có
\(AH^2=DH.HB\)
⇔ \(12^2=DH.16\)
=> \(DH=24\)
Xét tam giác AHD vuong tại H có
\(AH^2+DH^2=AD^2\)( đl Pyta go)
T/s \(12^2+24^2=AD^2\)
=> AD = \(12\sqrt{5}\)
Chu vi HCN ABCD là
( AB + AD ).2
= ( 20 +12\(\sqrt{5}\)).2
= 93,6 cm
Vây chu vi là 93,6 cm