K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

d) OD cat BE tai P D la truc tam cua tam giac BEO

=> OP vuong goc BE

Ta co AH//ME( cung vuong BM)=>DH/DM=AD/DE

ta co AF//PE( cung vuong OP)=>DF/DP=DH/DM =>DH/DM=DF/DP

tam giac DHF dong dang tam giacDMP (cgc) =>DHF=DMP => FH//MP(1)

AH//OM(cung vuong BM)=> BH/BM=BA/BO

AK//OP(cung vuong BE)=>BK/BP=BA/BO

=>BH/BM=BK/BP =>HK//MP( theo dltl dao)(2)

tu(1)(2)=> F H K thang hang

7 tháng 5 2018

d) OD cat BE tai P D la truc tam cua tam giac BEO

=> OP vuong goc BE

Ta co AH//ME( cung vuong BM)=>DH/DM=AD/DE

ta co AF//PE( cung vuong OP)=>DF/DP=DH/DM =>DH/DM=DF/DP

tam giac DHF dong dang tam giacDMP (cgc) =>DHF=DMP => FH//MP(1)

AH//OM(cung vuong BM)=> BH/BM=BA/BO

AK//OP(cung vuong BE)=>BK/BP=BA/BO

=>BH/BM=BK/BP =>HK//MP( theo dltl dao)(2)

tu(1)(2)=> F H K thang hang

24 tháng 5 2023

loading...  

BH=căn 10^2-6^2=8cm

=>BD=10^2/8=12,5cm

=>AD=7,5cm

S ABCD=7,5*10=75cm2

7 tháng 8 2016

ai giúp mk với, mk vẽ hình cho nha

8 tháng 8 2016

help me

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.   a. Chứng minh △AHB và △BCD đồng dạng    b. Chứng minh BC.AB = AH.BD     c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD   a. Chứng minh: △CBN và △CDM cân    b. Chứng minh: △CBN \(\sim\) △MDN    c. Chứng minh: M,C,N thẳng hàng3) Cho △ABC vuông tại A (AB < AC)...
Đọc tiếp

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.

   a. Chứng minh △AHB và △BCD đồng dạng

    b. Chứng minh BC.AB = AH.BD 

    c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)

2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD

   a. Chứng minh: △CBN và △CDM cân

    b. Chứng minh: △CBN \(\sim\) △MDN

    c. Chứng minh: M,C,N thẳng hàng

3) Cho △ABC vuông tại A (AB < AC) có đường cao AH.

   a. Chứng minh: △ABH\(\sim\)△CBA

    b. Chứng minh: \(AH^2=BH.HC\)

    c. Trên đường thẳng vuông góc với AC tại C, lấy điểm D sao cho CD=AB (D và B nằm khác phía so với đường thẳng AC). Đoạn thẳng HD cắt đoạn thẳng AC tại S. Kẻ \(\text{AF}\perp H\text{S }t\text{ại F}\)

Chứng minh BH.CH = HF.HD

1

3:

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC