Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
1: Xét ΔHDC có
M là trung điểm của HF
I là trung điểm của HD
Do đó: MI là đường trung bình của ΔHDC
Suy ra: MI//DF
hay MI//BC
2: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến ứng với cạnh đáy BC
nên AD là đường trung trực của BC
Ta có: MI//BC
AD\(\perp\)BC
Do đó: MI\(\perp\)AD
a: Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
=>AIMK là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MI//AC
Do đó: I là trung điểm của AB
Xét ΔBAC có
M,I lần lượt là trung điểm của BC,BA
=>MI là đường trung bình của ΔBAC
=>MI//AC và MI=AC/2
MI//AC
I\(\in\)MN
Do đó: MN//AC
Ta có: \(MI=\dfrac{AC}{2}\)
\(MI=\dfrac{MN}{2}\)
Do đó: MN=AC
Xét tứ giác ACMN có
MN//AC
MN=AC
Do đó: ACMN là hình bình hành
c: Xét ΔBAC có
M là trung điểm của CB
MK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
I,K lần lượt là trung điểm của AB,AC
=>IK là đường trung bình của ΔABC
=>IK//BC
=>IK//MQ
Ta có: ΔQAC vuông tại Q
mà QK là đường trung tuyến
nên \(QK=\dfrac{AC}{2}\)
mà MI=AC/2
nên QK=MI
Xét tứ giác MQIK có MQ//KI
nên MQIK là hình thang
Hình thang MQIK có MI=QK
nên MQIK là hình thang cân
a) Do M là trung điểm của CD (gt)
⇒ CM = DM = CD/2
Do I là trung điểm AE (gt)
H là trung điểm BE (gt)
⇒ HI là đường trung bình của ∆ABE
HI // AB và HI = AB/2 (2)
Do ABCD là hình chữ nhật (gt)
⇒ AB = CD (3)
Từ (1), (2) và (3) ⇒ HI = CM
Do ABCD là hình chữ nhật (gt)
⇒ AB // CD (4)
Từ (2) và (4) ⇒ HI // CD
⇒ HI // CM
Tứ giác CMIH có:
HI // CM (cmt)
HI = CM (cmt)
⇒ CMIH là hình bình hành
⇒ HC // MI
b) Do HC // MI (cmt)
⇒ ∠MIC = ∠ICH (so le trong)
Do HI // MC (cmt)
⇒ ∠HIC = ∠ICM (so le trong)
Do I và H lần lượt là trung điểm của AE và BE (gt)
⇒ AE/BE = AI/BH
Xét hai tam giác vuông: ∆AEB và ∆BEC có:
∠BAE = ∠CBE (cùng phụ ACB)
⇒ ∆AEB ∆BEC (g-g)
⇒ AE/BE = AB/BC
Mà AE/BE = AI/BH (cmt)
⇒ AI/BH = AB/AC
Xét ∆AIB và ∆BHC có:
AI/BH = AB/BC (cmt)
∠BAI = ∠CBH (cùng phụ ACB)
⇒ ∆AIB ∆BHC (g-g)
⇒ ∠ABI = ∠BCH
Do HI // AB (cmt)
⇒ ∠ABI = ∠BIH (so le trong)
⇒ ∠BIH = ∠BCH
Ta có:
∠BIM = ∠BIH + ∠HIC + ∠MIC
= ∠BCH + ∠ICM + ∠ICH
= ∠BCD = 90⁰
Vậy MI ⊥ IB
Gọi N là trung điểm của BE
=> MN là đường trung ình của tam giác ABE
=>MN//AB, MN=1/2 AB
Mà AB=CD và AB//CD
=>MN//CD, MN = 1/2 CD
=> MNCK là hình bình hành
=> NC//MK (1)
Ta có: MN //AB
AB vuông góc với BC
=> MN vuông góc với BC tại E (E thuộc BC)
Tam giác BCM có BE và ME là đường cao và chúng cắt nhau tại N
=> CN vuông góc với BM (2)
Từ (1) và (2) suy ra:
BM vuông góc với MK (đpcm)