K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

loading...

a) Do M là trung điểm của CD (gt)

⇒ CM = DM = CD/2

Do I là trung điểm AE (gt)

H là trung điểm BE (gt)

⇒ HI là đường trung bình của ∆ABE

HI // AB và HI = AB/2 (2)

Do ABCD là hình chữ nhật (gt)

⇒ AB = CD (3)

Từ (1), (2) và (3) ⇒ HI = CM

Do ABCD là hình chữ nhật (gt)

⇒ AB // CD (4)

Từ (2) và (4) ⇒ HI // CD

⇒ HI // CM

Tứ giác CMIH có:

HI // CM (cmt)

HI = CM (cmt)

⇒ CMIH là hình bình hành

⇒ HC // MI

b) Do HC // MI (cmt)

⇒ ∠MIC = ∠ICH (so le trong)

Do HI // MC (cmt)

⇒ ∠HIC = ∠ICM (so le trong)

Do I và H lần lượt là trung điểm của AE và BE (gt)

⇒ AE/BE = AI/BH

Xét hai tam giác vuông: ∆AEB và ∆BEC có:

∠BAE = ∠CBE (cùng phụ ACB)

⇒ ∆AEB ∆BEC (g-g)

⇒ AE/BE = AB/BC

Mà AE/BE = AI/BH (cmt)

⇒ AI/BH = AB/AC

Xét ∆AIB và ∆BHC có:

AI/BH = AB/BC (cmt)

∠BAI = ∠CBH (cùng phụ ACB)

⇒ ∆AIB ∆BHC (g-g)

⇒ ∠ABI = ∠BCH

Do HI // AB (cmt)

⇒ ∠ABI = ∠BIH (so le trong)

⇒ ∠BIH = ∠BCH

Ta có:

∠BIM = ∠BIH + ∠HIC + ∠MIC

= ∠BCH + ∠ICM + ∠ICH

= ∠BCD = 90⁰

Vậy MI ⊥ IB

14 tháng 11 2023

Gọi N là trung điểm của BE

=> MN là đường trung ình của tam giác ABE

=>MN//AB, MN=1/2 AB

Mà AB=CD và AB//CD

=>MN//CD, MN = 1/2 CD

=> MNCK là hình bình hành

=> NC//MK (1)

Ta có: MN //AB

AB vuông góc với BC

=> MN vuông góc với BC tại E (E thuộc BC)

Tam giác BCM có BE và ME là đường cao và chúng cắt nhau tại N

=> CN vuông góc với BM (2)

Từ (1) và (2) suy ra:

BM vuông góc với MK (đpcm)

12 tháng 11 2017

đề bài thiếu thì phải

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

5 tháng 2 2023

Biết câu b ko ak

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

1: Xét ΔHDC có 

M là trung điểm của HF

I là trung điểm của HD

Do đó: MI là đường trung bình của ΔHDC

Suy ra: MI//DF

hay MI//BC

2: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến ứng với cạnh đáy BC

nên AD là đường trung trực của BC

Ta có: MI//BC

AD\(\perp\)BC

Do đó: MI\(\perp\)AD

15 tháng 1 2021

Giải giúp mình bài c thôi cũng được ạ 😢

a: Xét tứ giác AIMK có

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

=>AIMK là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

MI//AC

Do đó: I là trung điểm của AB

Xét ΔBAC có

M,I lần lượt là trung điểm của BC,BA

=>MI là đường trung bình của ΔBAC

=>MI//AC và MI=AC/2

MI//AC

I\(\in\)MN

Do đó: MN//AC

Ta có: \(MI=\dfrac{AC}{2}\)

\(MI=\dfrac{MN}{2}\)

Do đó: MN=AC

Xét tứ giác ACMN có

MN//AC

MN=AC

Do đó: ACMN là hình bình hành

c: Xét ΔBAC có

M là trung điểm của CB

MK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

I,K lần lượt là trung điểm của AB,AC

=>IK là đường trung bình của ΔABC

=>IK//BC

=>IK//MQ

Ta có: ΔQAC vuông tại Q

mà QK là đường trung tuyến

nên \(QK=\dfrac{AC}{2}\)

mà MI=AC/2

nên QK=MI

Xét tứ giác MQIK có MQ//KI

nên MQIK là hình thang

Hình thang MQIK có MI=QK

nên MQIK là hình thang cân