K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

A B C D A' B' C' D'

\(AA'=\dfrac{2a}{\sqrt{3}}\)

\(V=AA'\cdot S_{ABCD}=\dfrac{16a^3}{\sqrt{3}}\)

29 tháng 10 2021

mn giúp mk vớiiiiiiiiii

NV
1 tháng 11 2021

Gọi H là hình chiếu vuông góc của A' lên (ABCD)

Do \(A'A=A'B=A'D\) \(\Rightarrow H\) trùng tâm đường tròn ngoại tiếp tam giác ABD

\(\Rightarrow H\) là trung điểm BD

\(AC=\sqrt{AB^2+AD^2}=2a\)\(\Rightarrow AH=\dfrac{1}{2}AC=a\)

\(\Rightarrow A'H=\sqrt{A'A^2-AH^2}=a\sqrt{3}\)

\(\Rightarrow V=A'H.AB.AD=3a^3\)

NV
5 tháng 1 2022

C là đáp án đúng

NV
31 tháng 8 2021

\(AC=AB\sqrt{2}=4a\)

Áp dụng định lý Pitago:

\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)

\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)

Chọn A