K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

ĐÁP ÁN: C

1.Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M,N,P lần lượt là trung điểm các cạnh AB,CD,SA. Q là 1 điểm thuộc đoạn SP. a, Xác định thiết diện của hình chóp cắt bởi ( ∝) đi qua Q và song song với (SBN) b, Xác định thiết diện của hình chóp cắt bởi ( Ф) đi qua MN song song với (SAD) 2. Cho lăng trụ ABC.A'B'C'. Gọi M,N,P là trung trọng tâm các tam giác AA'B, CA'C', CBC' a, Xác định giao tuyến 2 mặt phẳng (ABC) và...
Đọc tiếp

1.Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M,N,P lần lượt là trung điểm các cạnh AB,CD,SA. Q là 1 điểm thuộc đoạn SP.
a, Xác định thiết diện của hình chóp cắt bởi ( ∝) đi qua Q và song song với (SBN)
b, Xác định thiết diện của hình chóp cắt bởi ( Ф) đi qua MN song song với (SAD)

2. Cho lăng trụ ABC.A'B'C'. Gọi M,N,P là trung trọng tâm các tam giác AA'B, CA'C', CBC'
a, Xác định giao tuyến 2 mặt phẳng (ABC) và (BA'C')
b, Chứng minh MN // (BA'C'), (MNP) // (BA'C')
c, Xác định thiết diện của lăng trụ khi cắt bởi mặt phẳng (MNP) Tính diện tích thiết diện biết tam giác BA'C' là tam giác đều cạnh a

3, Cho hình hộp ABCD.A'B'C'D' có tất cả các mặt là hình vuông cạnh a. Trên các cạnh AB,CC',C'D' và AA' lấy các điểm M,N,P,Q sao cho AM = C'N = C'P = AQ = x ( 0 <= x <= a)
a, Chứng minh M,N,P,Q đồng phẳng và Mp,Nq cắt nhau tại 1 điểm cố định
b, Chứng minh MNPQ đi qua 1 đường thẳng cố định
c, Dựng thiết diện của hình hộp khi cắt bởi (MNPQ). Tìm GTLN và GTNN của chu vi thiết diện

0
3 tháng 1 2020

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có mặt phẳng (AA', DD') song song với mặt phẳng (BB', CC'). Mặt phẳng (MNP) cắt hai mặt phẳng nói trên theo hai giao tuyến song song.

Nếu gọi Q là điểm trên cạnh BB' sao cho NQ // PM thì Q là giao điểm của đường thẳng BB' với mặt phẳng (MNP)

Nhận xét. Ta có thể tìm điểm Q bằng cách nối P với trung điểm I của đoạn MN và đường thẳng PI cắt BB' tại Q.

b) Vì mặt phẳng (AA', BB') song song với mặt phẳng (DD', CC') nên ta có MQ // PN. Do đó mặt phẳng (MNP) cắt hình hộp theo thiết diện MNPQ là một ình bình hành.

Giả sử P không phải là trung điểm của đoạn DD'. Gọi H = PN ∩ DC , K = MP ∩ AD. Ta có D = HK là giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.

Chú ý rằng giao điểm E = AB ∩ MQ cũng nằm trên giao tuyến d nói trên. Khi P là trung điểm của DD' mặt phẳng (MNP) song song với mặt phẳng (ABCD).

25 tháng 5 2017

a) Ta có mặt phẳng (AA', DD') song song với mặt phẳng (BB',CC'). Mặt phẳng (MNP) cắt hai mặt phẳng nói trên theo hai giao tuyến song song.

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song