K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Ta áp dụng công thức Brahmagupta để tính

\(s=\frac{\sqrt{\left(AB^2+CD^2+BD^2+AC^2\right)+8\cdot AB\cdot CD\cdot BD\cdot AC-2\left(AB^4+CD^4+BD^4+AC^4\right)}}{4}\)

A) Thay số vào ta đc  \(S=6\sqrt{55}\approx44,4972\left(cm^2\right)\)

b)  \(S\approx244,1639\left(cm^2\right)\)

hok tốt ...

26 tháng 7 2019

Công thức Brahmagupta là công thức tính diện tích của một tứ giác nội tiếp (tứ giác mà có thể vẽ một đường tròn đi qua bốn đỉnh của nó) mà hình thang ko có đường tròn nào đi qua đủ bốn đỉnh của nó nên công thức này ko được áp dụng vào bài này

9 18 20 30 h a b

  ( mk vẽ hình hơi xấu, mong bạn thông cảm )

   Giải:

- Gọi chiều cao hình thang là h, ta có:

            \(h=\sqrt{18^2-a^2}=\sqrt{324-a^2}\)

            \(h=\sqrt{20^2-b^2}=\sqrt{400-b^2}\)

 \(\Rightarrow\sqrt{324-a^2}=\sqrt{400-b^2}\)

 \(\Leftrightarrow324-a^2=400-b^2\Rightarrow b^2-a^2=76\)

      Ta có độ dài a+b=30-9=21cm

 \(\Rightarrow\left(a+b\right)\left(b-a\right)=76\Rightarrow b-a=\dfrac{76}{21}\)

 \(\Rightarrow a=\left(21-\dfrac{76}{21}\right):2=\dfrac{365}{42}\approx8,69\)

 \(\Rightarrow b=21-\dfrac{365}{42}=\dfrac{517}{42}\approx12,309\)

  Áp dụng 2 công thức tính h, ta có:

  \(h=\sqrt{324-8,69^2}\approx15,763\)

  \(h=\sqrt{400-12,309^2}\approx15,763\)

 Vậy diện tích hình thang ABCD là:

       \(\dfrac{\left(9+20\right).15,763}{2}=228,5635cm^2\) ( làm tròn )

30 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ BE ⊥ CD

Suy ra tứ giác ABED là hình chữ nhật

Ta có: AD = BE

AB = DE = 4 (cm)

Suy ra: CE = CD – DE = 9 – 4 = 5 (cm)

Áp dụng định lí Pitago vào tam giác vuông BCE ta có :

B C 2 = B E 2 + C E 2

Suy ra : B E 2 = B C 2 - C E 2 = 13 2 - 5 2  = 144

BE = 12 (cm)

Vậy: AD = 12 (cm)

11 tháng 8 2015

2/AB/AC=3/4 nên AB=3AC/4(1)

Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC

 

28 tháng 3 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là trung điểm của BC

Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)

Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1) và (2) suy ra : IB = IH = R

Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD

14 tháng 6 2021

từ A hạ \(AE\perp DC\)

từ B hạ \(BF\perp DC\)

\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật

\(=>AB=EF=2cm\)

vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)

\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)

xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)

15 tháng 6 2021

cảm ơn cậu