Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tham khảo tai link sau nha: https://hoidap247.com/cau-hoi/225442
Do AE // DF, nên theo định lý Thales ta có:
\(\dfrac{AE}{DF}=\dfrac{OE}{OF}\). (1)
Do BE // CF, nên theo định lý Thales ta có:
\(\dfrac{BE}{CF}=\dfrac{OE}{OF}\). (2)
Từ (1), (2), kết hợp với gt DF = CF, ta có AE = BE. (đpcm)
1:
Xet ΔOAE và ΔOCF có
góc OAE=góc OCF
góc AOE=góc COF
=>ΔOAE đồng dạng với ΔOCF
=>AE/CF=OE/OF
Xét ΔOEB và ΔOFD có
góc OEB=góc OFD
góc EOB=góc FOD
=>ΔOEB đồng dạng với ΔOFD
=>EB/FD=OE/OF=AE/CF
mà CF=DF
nên EB=AE
=>E là trung điểm của BA
a) Vì ABCD là hình thang cân
=> AD = BC
=> ADC = BCD
=> AC = BD
=> DAB = CBA
Xét ∆ADC và ∆BCD ta có :
AD = BC
ADC = BCD
DC chung
=> ∆ADC = ∆BCD (c.g.c)
=> BDC = ACD ( tương ứng)
=> ∆DOC cân tại O.
b) Mà DAB + BAE = 180° ( kề bù)
ABC + ABE = 180° ( kề bù )
Mà DAB = CBA
=> EAB = EBA
=> ∆EAB cân tại E
Gọi giao điểm AB và EO là H
EO và DC là G
Mà AB//CD
=> BAC = ACD ( so le trong)
=> ABD = ACD ( so le trong)
Mà ACD = BDC
=> CAB = ABD
=> ∆ABO cân tại O
=> EO là trung trực và là phân giác ∆AOB
=> AOH = BOH ( phân giác )
Mà AOH = COG ( đối đỉnh)
BOH = DOG ( đối đỉnh)
Mà AOH = BOH ( EO là phân giác)
=> OG là phân giác DOC
Mà ∆DOC cân tại O
=> OG là trung trực DC
Hay EO là trung trực DC
Xét ΔDOF có :EB//DF
Áp dụng hệ quả định lí Ta-lét cho ΔDOF ta có
\(\dfrac{EB}{DF}=\dfrac{EO}{OF}\left(1\right)\)
Xét ΔOCF có AE//FC
Áp dụng hệ quả định lí Ta-lét cho ΔOFC ta có
\(\dfrac{AE}{FC}=\dfrac{EO}{OF}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{AE}{FC}=\dfrac{EB}{DF}\)
Mà AE=EB (gt)
=> FC =DF => F là trung điểm của DC