Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường chéo AC cắt EF tại G
EF // CD // AB hay EF // EG và GF // AB
Do EF // EG ,theo định lý Ta - let trong ΔADC :
AE/ED=AG/GC⇔AG/GC=42=2AE/ED=AG/GC⇔AG/GC=4/2=2
Do GF // AB ,theo định lý Ta - let trong ΔABC :
AG/GC=BF/FC⇔2=6/FC
⇒FC=3
Kẻ đường chéo AC cắt EF tại I
Trong ΔADC, ta có: EI // CD
Suy ra:
Suy ra:
Lại có :
Suy ra:
Từ (1) và (2) suy ra:
Trong ΔABC, ta có: FI // AB
Suy ra: (định lí ta-lét) (3)
Trong ΔADC, ta có : EI // CD
Suy ra: (định lí ta-lét) (4)
Từ (3) và (4) suy ra
Trong ΔABC, ta có: IF // AB
Suy ra: (định lí ta-lét)
Suy ra:
Ta có:
Suy ra:
Từ (5) và (6) suy ra:
Vậy:
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
Kẻ đường chéo AC cắt EF tại G
EF // CD // AB hay EF // EG và GF // AB
Do EF // EG ,theo định lý Ta - let trong ΔADC :
\(\dfrac{AE}{ED}=\dfrac{AG}{GC}\Leftrightarrow\dfrac{AG}{GC}=\dfrac{4}{2}=2\)
Do GF // AB ,theo định lý Ta - let trong ΔABC :
\(\dfrac{AG}{GC}=\dfrac{BF}{FC}\Leftrightarrow2=\dfrac{6}{FC}\)
\(\Rightarrow FC=3\)
xét hình thang ABCD có AB // CD (gt)
=> \(\dfrac{AE}{ED}=\dfrac{BF}{FC}\) (ĐỊNH LÍ TALET)
thay số: \(\dfrac{4}{2}=\dfrac{6}{FC}\)
=> FC = \(\dfrac{2.6}{4}\) = 3
VẬY FC = 3 CM
Xét hình thang ABCD có EF//AB//CD
nên AE/ED=BF/FC
=>6/FC=2
hay FC=3(cm)
Xét hình thang ABCD có
EF//AB//CD
nên AE/ED=BF/FC