Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là giao điểm của AC và BD.
∆ECD có ∠C1 = ∠D1 (do ∠ACD = ∠BDC) nên là tam giác cân.
Suy ra EC = ED (1)
Tương tự ∆EAB cân tại A suy ra: EA = EB (2)
Từ (1) và (2) ta có: EA + EC = EB + ED ⇒ AC = BD
Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.4
AB=AD
=>góc ABD=góc ADB
=>góc ADB=góc BDC
=>góc ADC=2*góc BDC=60 độ
góc BCD=góc ADC=60 độ
góc DAB=góc ABC=180-60=120 độ
Có AB // CD, góc ABD và góc BDC là hai góc so le trong => góc ABD = góc BDC = 30o
Có AB = AD => tam giác ABD cân tại A => góc ABD = góc ADB = 30o
Góc ADC = góc ADB + góc BDC = 30o + 30o = 60o
Hình thang ABCD có AD = BC => ABCD là hình thang cân => góc ADC = góc BCD = 60o và góc DAB = góc CAB
Lại có AB // CD, góc DAB và góc ADC là hai góc trong cùng phía => góc DAB + góc ADC = 180o => góc DAB = 180o - góc ADC = 180o - 60o = 120o => góc CAB = góc DAB = 120o
c,
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
Em tham khảo câu 1 tại link dưới:
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
hình như sai đề