Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
?2:
a: Xét ΔBAC và ΔDCA có
\(\widehat{BAC}=\widehat{DCA}\)
AC chung
\(\widehat{BCA}=\widehat{DAC}\)
Do đó: ΔBAC=ΔDCA
SUy ra: BC=DA và AB=CD
b: Gọi O là giao điểm của AC và BD
Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)
AB=CD
\(\widehat{OBA}=\widehat{ODC}\)
Do đó: ΔAOB=ΔCOD
Suy ra: OA=OC và OB=OD
Xét ΔAOD và ΔCOB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔAOD=ΔCOB
Suy ra: AD=CB và \(\widehat{ADO}=\widehat{CBO}\)
=>AD//BC
a: Xét ΔADC có
M,N lần lượt là trung điểm của AD và AC
nên MN là đường trung bình
=>MN//CD(1)
Xét hình thang ABCD có
M,P lần lượt la trung điểm của AD và BC
nên MP là đường trung bình
=>MP//AB//CD(2)
Từ (1) và (2)suy ra M,N,P thẳng hàng
b: MN=DC/2=3,5cm
NP=AB/2=2,5cm
MP=3,5+2,5=6cm
c: MP=(AB+CD)/2
a: góc ABD=góc BDC
=>góc ABD=góc ADB
=>ΔABD cân tại A
=>AB=AD=17cm
=>BC=17cm
b: Xét tứ giác ABED có
AB//ED
AB=ED
AB=ED
=>ABED là hình thoi
=>góc BEC=góc ADE
=>góc BEC=góc BCE
=>ΔBCE cân tại B
từ A kẻ đường thẳng song song với BC cắt CD tại E
\(\Rightarrow\) Tứ giác ABCE là hình bình hành \(\Rightarrow AB=CE=4cm;AE=BC=5cm\)\(\Rightarrow DE=CD-EC=4cm\)
xét tam giác ADE có AD2+ DE2 = 32 + 42 = 25; AE2 = 52 =25 \(\Rightarrow AD^2+DE^2=AE^2\)\(\Rightarrow\Delta ADE\) vuông tại D \(\Rightarrow AD\) Vuông góc với DE hay AD vuông góc với DC suy ra tứ giác ABCD là hình thang vuông