Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB+CD=16,3(m)
CD-AB=7,5m
=>CD=11,9; AB=4,4
b: AD=2/3DE
=>EA/ED=1/3
=>S EAB/S EDC=1/3
=>S EAB/S EAB+29,34=1/3
=>3*S EAB=S EAB+29,34
=>S EAB=14,67cm2
Sửa đề: Chứng minh MB\(\perp\)MC
Xét ΔABM vuông tại A và ΔDMC vuông tại D có
AB=DM
AM=DC
Do đó: ΔABM=ΔDMC
=>\(\widehat{AMB}=\widehat{DCM}\)
mà \(\widehat{DCM}+\widehat{DMC}=90^0\)
nên \(\widehat{AMB}+\widehat{DMC}=90^0\)
\(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^0\)
=>\(\widehat{BMC}+90^0=180^0\)
=>\(\widehat{BMC}=90^0\)
=>MB\(\perp\)MC
Vì AD vuông góc với hai đáy AB và CD nên \(\widehat{A}=\widehat{D}=90^0\)
Vì ABCD có 2 đáy AB,CD nên AB // CD. Do đó, \(\widehat B + \widehat C = 180^\circ \) ( 2 góc trong cùng phía)
Mặt khác:
\(\begin{array}{l}\widehat B = 2.\widehat C\\ \Rightarrow 2.\widehat C + \widehat C = 180^\circ \\ \Rightarrow 3.\widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ :3 = 60^\circ \end{array}\)
\(\Rightarrow \widehat B = 2. \widehat{C}=2.60^0=120^0\)
Vậy \(\widehat{A}=\widehat{D}=90^0; \widehat B = 120^0; \widehat C =60^0\)
Kẻ BE // AD (E thuộc CD) ---> ^BEC = ^ADC = 60*
ABED là hình bình hành ---> DE = 2 ---> EC = 4 căn 3
Tam giác BEC có ^BEC = 60*; ^BCE = 30* nên nó bằng nửa tam giác đều
---> BE = EC/2 = 2 căn 3
Gọi BH là đường cao hình thang.
Tam giác BEH cũng là nửa tam giác đều (vì ^BEH = 60*; ^BHE = 90*)
---> EH = BE/2 = căn 3
---> BH^2 = BE^2 - EH^2 = 12 - 3 = 9 ---> BH = 3 (cm)
Trả lời : 3 cm.
duyên ghê he mới lớp 6 mà làm đc lớp 7 giỏi ha coppy nhanh thật