Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}\)
\(=\overrightarrow{EI}+\overrightarrow{IA}+\overrightarrow{EJ}+\overrightarrow{JB}+\overrightarrow{EI}+\overrightarrow{IC}+\overrightarrow{EJ}+\overrightarrow{JD}\)
\(=2\left(\overrightarrow{EI}+\overrightarrow{EJ}\right)+\left(\overrightarrow{IA}+\overrightarrow{IC}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}\)
a) Ta có: \(\overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} \)\( = 4\overrightarrow {EG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} \)
Mà: \(\overrightarrow {GA} + \overrightarrow {GB} = 2\overrightarrow {GM} ;\) (do M là trung điểm của AB)
\(\overrightarrow {GC} + \overrightarrow {GD} = 2\overrightarrow {GN} \) (do N là trung điểm của CD)
\( \Rightarrow \overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = 4\overrightarrow {EG} + 2(\overrightarrow {GM} + \overrightarrow {GN} ) = 4\overrightarrow {EG} \) (do G là trung điểm của MN)
b) Vì E là trọng tâm tam giác BCD nên \(\overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = \overrightarrow 0 \)
Từ ý a ta suy ra \(\overrightarrow {EA} = 4\overrightarrow {EG} \)
c) Ta có: \(\overrightarrow {EA} = 4\overrightarrow {EG} \Leftrightarrow \overrightarrow {EA} = 4.(\overrightarrow {EA} + \overrightarrow {AG} ) \Leftrightarrow - 3\overrightarrow {EA} = 4\overrightarrow {AG} \)
\( \Leftrightarrow 3\overrightarrow {AE} = 4\overrightarrow {AG} \) hay \(\overrightarrow {AG} = \frac{3}{4}\overrightarrow {AE} \)
Suy ra A, G, E thẳng hàng và \(AG = \frac{3}{4}AE \) nên G thuộc đoạn AE.
1.
Dựng \(\overrightarrow{DB'}=\overrightarrow{CB}\)
\(k\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{DB}\)
\(=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{DA}+\overrightarrow{AB}\)
\(=2\overrightarrow{AB}+\overrightarrow{B'D}+\overrightarrow{DA}\)
\(=2\overrightarrow{AB}+\overrightarrow{B'A}\)
\(=2\overrightarrow{AB}+2\overrightarrow{AB}=4\overrightarrow{AB}\)
\(\Rightarrow k=4\)
Gọi M là trung điểm IB
\(\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\left|2\overrightarrow{AM}\right|=2AM\)
Ta có \(\overrightarrow{AM}^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2=MI^2+IA^2-2MI.IA.cos90^o=\dfrac{1}{16}a^2+\dfrac{3}{4}a^2=\dfrac{13}{16}a^2\)
\(\Rightarrow AM=\dfrac{\sqrt{13}}{4}a\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\dfrac{\sqrt{13}}{2}a\)