Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:
Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.
Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2 = 52, từ đó DB = 52 = 2 13 (cm)
Theo đề có:
\(\dfrac{HD}{BH}=\dfrac{AD^2}{AB^2}=\dfrac{4^2}{6^2}=\dfrac{4}{9}\)
Tam giác HDC ∼ tam giác HBA nên:
\(\dfrac{DC}{AB}=\dfrac{HD}{BH}=\dfrac{4}{9}\Rightarrow DC=AB.\dfrac{4}{9}=6.\dfrac{4}{9}=\dfrac{8}{3}\left(cm\right)\)
Từ C kẻ CK là đường cao của tam giác ABC có: \(KB=AB-DC=6-\dfrac{8}{3}=\dfrac{10}{3}\left(cm\right)\)
\(\Rightarrow BC=\dfrac{\sqrt{244}}{3}=\dfrac{2\sqrt{61}}{3}\left(cm\right)\)
Xét tam giác vuông ABD có \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
Hai đường chéo AC,BD cắt nhau tại H .Trong tam giác vuông ABD ,ta có :
\(\frac{HD}{HB}=\frac{AD^2}{AB^2}=\frac{4^2}{6^2}=\frac{4}{6}\)
Dễ thấy \(\Delta HDC~\Delta HBA\)nên
\(\frac{DC}{AB}=\frac{HD}{HB}\)\(=\frac{4}{9}\)\(\Rightarrow\)\(DC\)=\(\frac{4}{9}.6=\frac{8}{3}\)(Cm)
Kẻ đường cao CK của tam giác ABC , dễ thấy KB = AB - DC = 6 -\(\frac{8}{3}\)=\(\frac{10}{3}\)
\(\Rightarrow\)\(BC=\frac{\sqrt{224}}{3}=\frac{2\sqrt{61}}{3}\left(cm\right)\)
Theo đề có:
Tam giác HDC ∼ tam giác HBA nên:
Từ C kẻ CK là đường cao của tam giác ABC có:
Xét tam giác vuông ABD có
Câu 11.12.
Kẻ đường cao \(AH,BK\).
Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).
Đặt \(AB=AH=x\left(cm\right),x>0\).
Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)
Xét tam giác \(AHD\)vuông tại \(H\):
\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore)
Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)
Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)
\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))
Vậy đường cao của hình thang là \(2\sqrt{5}cm\).
Câu 11.11.
Kẻ \(AE\perp AC,E\in CD\).
Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành.
Suy ra \(AE=BD=15\left(cm\right)\).
Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AC=20\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath