Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích khối tròn xoay tạo thành bằng thể tích hình trụ có bán kính đáy AB và đường sinh AD trừ đi phần thể tích hình nón có bán kính đáy OD = AB và đường cao OC = AD - BC
Vậy
Chọn B.
Đáp án B
Ta có V = π ∫ 0 π − sin x 2 d x = π ∫ 0 π sin 2 x d x
Đáp án A
Khi quay hình thang ABCD quanh cạnh AB ta được khối nón cụt có
Bán kính hai đáy lần lượt là r = A D = a R = B C = 2 a .
Chiều cao h = A B = a . ⇒ V = π h 3 R 2 + r 2 + R . r = 7 π a 3 3 .
Giải phương trình:
Phương trình (1) có tối đa 1 nghiệm. Mà f π = 0 ⇒ x = π là nghiệm duy nhất của (1).
Thể tích khối tròn xoay tạo thành là:
Mà
Chọn A.
Đáp án D
Khi quay hình thang cân ABCD quanh trục đối xứng ta được hình nón cụt có chiều cao h = 2 a 2 và bán kính 2 đáy là R 1 = a , R 2 = 2 a .
Vậy thể tích cần tính là V = πh 3 R 1 2 + R 2 2 + R 1 R 2 = 14 2 3 πa 3
Đáp án C.
Phân tích phương án nhiễu:
Phương án A: Sai do HS viết nhầm thứ tự cận.
Phương án B: Sai do HS nhớ nhầm với công thức tính diện tích hình phẳng.
Phương án D: Sai do HS thiếu π trong công thức tính thể tích.
Đáp án B
Ta có thể tích vật thể tròn xoay được tạo ra S = S 1 + S 2 .
S 1 = π − 5 2 2 5 25 − x 2 2 d x = 500 π 3 .
S 2 = 1 3 π 5 2 2 3 = π .125.2 2 3.8 = 125 π 2 6
Vậy S = 1000 π + 125 π 2 6 .
Đáp án B
Thể tích khối tròn xoay cần tìm = Thể tích khối trụ – Thể tích khối nón (theo hình vẽ)
Khối trụ có chiều cao AD = 2a, bán kính r = a ⇒ V t r u = 2 π a 3
Khối nón có chiều cao A D − B C = a , bán kính r = a ⇒ V n o n = 1 3 π a 3
Thể tích khối tròn xoay cần tìm = 5 3 π a 3