Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AFED có
AF//ED
AD//EF
Do đó: AFED là hình bình hành
b: Xét ΔMBF và ΔMCE có
\(\widehat{MBF}=\widehat{MCE}\)
MB=MC
\(\widehat{BMF}=\widehat{CME}\)
Do đó: ΔMBF=ΔMCE
Suy ra: MF=ME
hay M là trung điểm của EF
Xét tứ giác BFCE có
M là trung điểm của BC
M là trung điểm của FE
Do đó: BFCE là hình bình hành
a, Vì O là trung điểm EF
MN qua O //AB//CD
=>M là trung điểm AD, N là TD BC
a: ABCD là hình chữ nhật
=>O là trung điểm chug của AC và BD; AC=BD
=>OM=ON
Xét ΔAON và ΔCOM có
OA=OC
góc AON=góc COM
ON=OM
=>ΔAON=ΔCOM
Xet tứ giác ANCM có
O là trung điểm chung của AC và NM
=>ANCM là hình bình hành
b: Xét ΔDMC có OH//MC
nên DO/OM=DH/HC
=>DH/HC=2/1=2
=>DH=2HC
Xét ΔDOH có
N là trung điểm của DO
NE//OH
=>E là trung điểm của DH
=>DE=EH=1/2DH=HC
=>EH=1/3*DC
Xét ΔMFB và ΔMCD có
góc MFB=góc MCD
góc FMB=góc CMD
=>ΔMFB đồng dạng với ΔMCD
=>FB/CD=MB/MD=1/3
=>FB=1/3CD=EH
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath
a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)
=> FK là đường trung bình của tam giác ACD
=> FK//AD
=> ADKF là hình thang
Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD
=> ME // AD mà FK//AD (cmt)
=> ME//FK (1)
Chứng minh tương tự ta cũng có:
MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC
=> MF//BC ; EK // BC
=> MF//EK (2)
Từ (1) và (2) ta có: EMFK là hình bình hành
Cm: Xét tứ giác AFED có AF // DE (gt)
AD // FE (gt)
=> AFED là hình bình hành
b) Xét t/giác BFM và t/giác CEM
có: BM = MC (gt)
\(\widehat{B_1}=\widehat{C}\) (slt của AF // DC)
\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)
=> t/giác BFM = t/giác CEM (g.c.g)
=> S t/giác BFM = S t/giác CEM
Xét t/giác ADE và t/giác EAF
có AD = EF (do AFED là hình bình hành)
AF = AE ( ..........................)
AE : chung
=> t/giác ADE = t/giác EAF (c.c.c)
=> S t/giác ADE = S t/giác EAF (1)
Ta có: SAEF = SABME + SBFM = SABME + SMEC = SABCE (do SBFM = SMEG) (2)
Ta lại có: SABCD = SADE + SABCE = 2SADE
=> SADE = 1/2SABCD (3)
Từ (1); (2) và( 3) => SADE = SABEC = 1/2SABCD