K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 7 2019

Lời giải:
Kẻ đường cao $BK$

Tứ giác $ABKH$ có $AB\parallel HK, AH\perp BK$ (cùng vuông góc với $DC$) nên $ABKH$ là hình bình hành. Mà $\widehat{AHK}=90^0$ nên $ABKH$ là hình chữ nhật.

\(\Rightarrow HK=AB\); $AH=BK$

Xét 2 tam giác vuông $ADH$ và $BCK$ có:

\(AD=BC\) (tính chất hình thang cân)

\(AH=BK\)

\(\Rightarrow \triangle ADH=\triangle BCK(ch-cgv)\)

\(\Rightarrow DH=CK\)

\(DH+CK=DC-HK=DC-AB\)

\(\Rightarrow DH=\frac{DC-AB}{2}\) (đpcm)

b)

Theo phần a \(CK=DH=\frac{DC-AB}{2}=\frac{13-5}{2}=4\) (cm)

\(DK=DH+HK=DH+AB=4+5=9\) (cm)

Xét tam giác $BDK$ và $CBK$ có:

\(\widehat{BKD}=\widehat{CKB}=90^0\)

\(\widehat{BDK}=\widehat{CBK}(=90^0-\widehat{DBK})\)

\(\Rightarrow \triangle BDK\sim \triangle CBK(g.g)\Rightarrow \frac{BK}{DK}=\frac{CK}{BK}\)

\(\Rightarrow BK^2=CK.DK=4.9=36\Rightarrow BK=6\) (cm)

Áp dụng đl Pitago cho tam giác vuông $BHK$: \(HB=\sqrt{HK^2+BK^2}=\sqrt{5^2+6^2}=\sqrt{61}\) (cm)

\(S_{ABCD}=\frac{(AB+CD).BK}{2}=\frac{(5+13).6}{2}=54(cm^2)\)

AH
Akai Haruma
Giáo viên
3 tháng 7 2019

Hình vẽ:

Căn bậc hai. Căn bậc ba

1 tháng 7 2018

Ta áp dụng công thức Brahmagupta để tính

\(s=\frac{\sqrt{\left(AB^2+CD^2+BD^2+AC^2\right)+8\cdot AB\cdot CD\cdot BD\cdot AC-2\left(AB^4+CD^4+BD^4+AC^4\right)}}{4}\)

A) Thay số vào ta đc  \(S=6\sqrt{55}\approx44,4972\left(cm^2\right)\)

b)  \(S\approx244,1639\left(cm^2\right)\)

hok tốt ...

26 tháng 7 2019

Công thức Brahmagupta là công thức tính diện tích của một tứ giác nội tiếp (tứ giác mà có thể vẽ một đường tròn đi qua bốn đỉnh của nó) mà hình thang ko có đường tròn nào đi qua đủ bốn đỉnh của nó nên công thức này ko được áp dụng vào bài này

4 tháng 9 2019

Tham Khảo:Cho hình thang vuông ABCD,Tính diện tích hình thang ABCD,Toán học Lớp 9,bà i tập Toán học Lớp 9,giải bà i tập Toán học Lớp 9,Toán học,Lớp 9

31 tháng 7 2016

bạn học casio à. cần tài liệu thì ib đưa link face mình gửi nhé

31 tháng 7 2016

dùng hàm cos + tam giác dd+ pytago
nhớ tính xong gán để tính cho chính xác