Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình thang ABCD có các đường cao AH và BK. Từ A kẻ đường thẳng song song với BD cắt CD ở E Þ AB = ED.
Chứng minh A C H ^ = 45 0 . Do DEAC vuông cân ở A nên A H = C H = E H = A B + C D 2
Gọi giao điểm 2 đường chéo là O
=> Các tam giác OAB và OCD đều vuông cân tại O.
Vẽ các đường cao OH của tam giác OAB và đường cao OK của tam giác OCD.
Vì AD//CD mà OH vuông góc với AB và OK vông góc với CD nên H,O,K thẳng hàng (cùng nằm trên đường thẳng qua O vuông góc AB), và HK chính là chiều cao hình thang.
+) Tam giác OAB vuông cân tại O, đường cao OH => OH=1/2.AB
+) Tam giác OCD vuông cân tại O, đường cao OK=> OK=1/2.CD
---> Chiều cao hình thang: HK=OH+OK=1/2.(AB+CD) ---> đpcm
nhận xét : Thang cân => 2 đường chéo bằng nhau. Gọi O là giao của 2 đường chéo,
hai đường chéo vuông góc => tam giác OCD vuông cân đỉnh O
vẽ: vẽ tam giác vuông cân COD , trên tia đối của tia OC lấy A , trên tia đối của tia
OD lấy B sao cho OA = OB (< OC nếu AB là đáy nhỏ) => ABCD là thang cân đáy nhỏ AB, dáy lớn CD và có 2 đường chéo vuông góc
*Tính AB + CD:
Từ A và B hạ AH và BK vuông góc CD , H,K thuộc CD . D0 ABCD là thang cân đáy AB, CD
=> DH = CK và AB = HK => AB + CD = AB + DH + HK+KC = HK + CK + HK+KC =2HC
tam giác OCD vuông cân đỉnh O => góc OCD =45 độ => góc ACD =45 độ
lại có tam giác AHC vuông tại H, góc ACD =45 độ => vuông cân => HC = AH = h
=> tổng 2 đáy AB + CD = 2h
kẻ AE//BD , AE giao CD = E
=> AE= BD ( theo nhận xét )
=> AB = ED ( theo nhận xét 2 )
ABCD là hình thang cân
=> AC = BD ( t/c hình thang cân )
mà AE = BD ( cmt )
=> AE = AC=> tg AEC cân ở AAH đường cao đồng thời là đường trung tuyến => HE = HCGọi AC giao BD tại O AE//BD ( gt )=> góc EAC = góc DOC = 90 độ ( đồng vị )=> tg AEC vuông cân= > AH = \(\frac{EC}{2}\) ( vì trong cùng một tam giác vuông cân đường trung tuyến bằng nửa cạnh huyền )=> 2AH = EC = 2hmà EC = ED+ DC ED= AB ( cmt )=> AB + DC = 2h ( đpcm )