Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N là trung điểm của CD.
Xét \(\Delta\)ABD: M là trung điểm AB; MH // AD; H thuộc BD => H là trung điểm BD
Ta có: OH vuông góc với MH tại H. Mà MH // AD nên OH vuông góc AD
Xét \(\Delta\)ABC: M là trung điểm AB; MK // BC; K thuộc AC => K là trung điểm AC
Lại có: OK vuông góc MK tại K; MK // BC => OK vuông góc BC
Xét \(\Delta\)BDC: H là trung điểm BD; N là trung điểm CD => HN là đường trung bình \(\Delta\)BDC
=> HN // BC. Mà OK vuông góc BC (cmt) => OK vuông góc HN.
Xét \(\Delta\)ADC: K là trung điểm AC; N là trung điểm CD => KN là đường trung bình \(\Delta\)ADC
=> KN // AD. Mà OH vuông góc AD (cmt) => OH vuôn góc KN
Xét \(\Delta\)HNK: OK vuông góc HN; OH vuông góc KN (cmt) => O là trực tâm của \(\Delta\)HNK
=> NO vuông góc KH. Mà HK // DC (Dễ chứng minh) => NO vuông góc DC
Xét \(\Delta\)DOC: ON vuông góc DC (cmt); N là trung điểm DC => \(\Delta\)DOC cân tại O
=> OD = OC => O cách đều 2 điểm C và D (đpcm).
a: Xét ΔAMB vuông tại M và ΔAPD vuông tại P có
AB=AD
góc A chung
Do đó: ΔAMB=ΔAPD
=>AM=AP
Xét ΔAMH vuông tại M và ΔAPH vuông tại P có
AH chung
AM=AP
Do đó: ΔAMH=ΔAPH
=>góc MAH=góc PAH
=>AH là phân giác của góc BAD(1)
ΔABD cân tại A
mà AO là trung tuyến
nên AO là phân giác của góc BAD(2)
Từ (1), (2) suy ra A,H,O thẳng hàng
b: Xét ΔCDB có
DQ,BN là đường cao
DQ cắt BN tại K
Do đó; K là trực tâm của ΔCDB
=>CK vuông góc BD
ΔCBD cân tại C
mà CO là trung tuyến
nên CO vuông góc BD
=>C,K,O thẳng hàng
C,K,O thẳng hàng
A,H,O thẳng hàng
A,O,C thẳng hàng(ABCD là hình thoi có O là giao của hai đường chéo AC và BD)
Do đó: C,K,O,H,A thẳng hàng
=>A,H,K,C thẳng hàng
=>HK vuông góc DB
c: Xét tứ giác BHDK có
BH//DK
BK//DH
Do đó: BHDK là hình bình hành
mà HK vuông góc BD
nên BHDK là hình thoi
a: góc OAB=góc ODC
góc OBA=góc BCD
mà góc ODC=góc BCD
nên góc OAB=góc OBA
=>ΔOBA cân tại O
b: Xét ΔABD và ΔBAC có
BA chung
BD=AC
AD=BC
=>ΔABD=ΔBAC
c: ΔABD=ΔBAC
=>góc ABD=góc BAC
=>EA=EB
=>EC=ED
d: OA+AD=OD
OB+BC=OC
mà OA=OB và AD=BC
nên OD=OC
=>OE là trung trực của DC
=>O,E,trung điểm của DC thẳng hàng
a) Chứng minh ΔOAB cân tại O:
Vì AB//CD, ta có ∠ABO = ∠CDO (do là góc đồng quy của hai đường thẳng AB và CD).
Tương tự, vì AB//CD, ta có ∠BAO = ∠DCO (do là góc đồng quy của hai đường thẳng AD và BC).
Do đó, ΔOAB có hai góc bằng nhau với ΔCDO, nên ΔOAB cân tại O.
b) Chứng minh ΔABD = ΔBAC:
Vì AB//CD, ta có ∠ABD = ∠BAC (do là góc đồng quy của hai đường thẳng AB và CD).
Tương tự, vì AB//CD, ta có ∠ADB = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).
Do đó, ΔABD có hai góc bằng nhau với ΔBAC, nên ΔABD = ΔBAC.
c) Chứng minh EC = ED:
Vì AC là đường chéo của hình thang ABCD, nên AC chia BD thành hai đoạn bằng nhau.
Do đó, AE = CE và DE = BE.
Vì ΔAEB và ΔCEB có hai cạnh bằng nhau (AE = CE và BE = DE) và góc AEB = góc CEB (do AB//CD), nên ΔAEB = ΔCEB.
Từ đó, ta có EC = ED.
d) Chứng minh O, E và trung điểm của DC thẳng hàng:
Gọi F là trung điểm của DC. Ta cần chứng minh OF//AB.
Vì F là trung điểm của DC, nên DF = FC.
Vì AB//CD, ta có ∠FDC = ∠BAC (do là góc đồng quy của hai đường thẳng AD và BC).
Tương tự, vì AB//CD, ta có ∠FCD = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).
Do đó, ΔFDC có hai góc bằng nhau với ΔBAC, nên ΔFDC = ΔBAC.
Từ đó, ta có OF//AB.
Vậy, O, E và trung điểm của DC thẳng hàng.