Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
`Answer:`
a) Áp dụng định lý Pytago vào `\triangleAMN` vuông tại `A`, ta có:
`AN^2 =MN^2 -AM^2 <=>AN^2 =37^2 -12^2 <=>AN^2 =1369-144=1225<=>AN=35cm`
Ta có: `AM<AN<MN=>\hat{N}<\hat{M}<\hat{A}`
b) Xét `\triangleABI` và `\triangleNBI`, ta có:
`BI` chung
`AI=NI`
`\hat{AIB}=\hat{BIN}=90^o`
`=>\triangleABI=\triangleNBI`
c) Ta có:
`BI` vuông góc `AN`
`AM` vuông góc `AN`
\(\Rightarrow BI//AM\)
Mà `I` là trung điểm `AN`
`=>B` là trung điểm `MN`
`=>NB=1/2 MN`
Xét `\triangleACN`, ta có:
`NB` và `CI` là đường trung tuyến mà đều đi qua `D`
`=>D` là trọng tâm
`=>ND=2/3 NB`
Mà `NB=MB`
`=>ND=1/3 MN`
`=>MN=3ND`
Anh/chị tự kẻ hình nha :
tam giác MNP cân tại P (gt) => MP = NP (đn) và góc PNM = góc PMN (tc)
góc PQM = góc PQN = 90o do PQ | MN (gt)
=> tam giác MPQ = tam giác NPQ (ch - gn)
b, tam giác MPQ = tam giác NPQ (câu a)
=> MQ = QN (đn) mà Q nằm giữa M và N
=> Q là trung điểm của MN
c, xét tam giác MIK và tam giác MQK có : MK chung
góc QMK = góc KMI do MK là pg của góc M (gt)
góc KQM = góc KIM = 90 do ...
=> tam giác MIK = tam giác MQK (cgv - gnk)
=> KI = KQ (đn)
=> tam giác KIQ cân tại K (đn)
a: Xét ΔMNK và ΔMIK có
MN=MI
góc NMK=góc IMK
MK chung
=>ΔMNK=ΔMIK
=>KN=KI
=>ΔKNI cân tại K
b: ΔMNK=ΔMIK
=>góc MIK=góc MNK=90 độ
b: Xét ΔMEP có
EI,PN là đường cao
EI cắt PN tại K
=>K là trực tâm
=>MK vuông góc EP
a: Xét ΔNMH vuông tại M và ΔNEH vuông tại E có
NH chung
góc MNH=góc ENH
=>ΔNMH=ΔNEH
b: Xét ΔNME có NM=NE và góc MNE=60 độ
nên ΔMNE đều
Toán8