Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Ta có: MP=MO+OP
NQ=NO+OQ
mà MO=NO
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Suy ra: OM=ON
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Suy ra: OQ=OP
Ta có: OM+OP=MP
ON+OQ=NQ
mà OM=ON
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Ta có: MP=MO+OP
NQ=NO+OQ
mà MO=NO
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: ΔNMP=ΔMNQ
=> MP=NQ
Mà MNPQ là hthang
=> MNPQ là hthang cân
Ta có: EF//QP
=> FEQP là hthang
Mà \(\widehat{EQP}=\widehat{FPQ}\)(ABCD là hthang cân)
=> FEQP là hthang cân
Ta có: EF//QP
Mà QP//MN(ABCD là hthang cân)
=> EF//MN
=> MNFE là hthang
Mà \(\widehat{EMN}=\widehat{MNF}\)(ABCD là hthang cân)
=> MNFE là hthang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Suy ra: OQ=OP
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Suy ra: OM=ON
Ta có: OM+OP=MP
ON+OQ=NQ
mà OM=ON
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
a) Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC
=> MN//BC; MN=1/2BC (1).
Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC
=> PQ//BC; PQ=1/2BC (2).
từ (1) và (2) suy ra MN//PQ; MN=1/2PQ.
Tứ giác MNPQ có MN//PQ; MN=1/2PQ.
vậy MNPQ là hình bình hành.
b) câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan.
c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.
Giả sử GÓc N=90 độ
Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG=> NP//AG
mà NP vuông góc với MN. từ hai điều này suy ra AG cũng vuông góc với MN.
lại có MN//BC(cmt) từ hai điều này lại suy ra AG vuông góc với BC.
tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau
Giả sử MP=NQ (1)
ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM
G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN. từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN (2)
Từ (1) và (2) suy ra MP+BP=NQ+CQ hay BM=CN
Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A( điều này đã được chứng minh ở lớp 7, bạn không cần chứng minh lại)
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay
c)Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.
Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi,.
Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi
ta có MNPQ là hình thang=>MN//PQ
mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)
=>tam giác MNO cân tại O=>MO=NO
=>tam giác QOP cân tại O=>OQ=Op
=>MO+OP=NO+OQ=>NQ=MP
=>MNPQ là hình thang cân
\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)
\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)
mà EF//PQ=>EF//MN
=>MNFE là hình thang(3)
từ (1)(3)=>MNFE là hình thang cân
=>EFPQ là hình thang(4)
(2)(4)=>EFPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOPQ cân tại O
Ta có: OM+OP=MP
ON+OQ=QN
mà OM=ON
và OP=OQ
nên MP=QN
Hình thang MNPQ có MP=QN
nên MNPQ là hình thang cân
Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)
Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)
nên EMNF là hình thang cân
Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)
nên EQPF là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Suy ra: OM=ON
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Suy ra: OQ=OP
Ta có: OM+OP=MP
ON+OQ=NQ
mà OM=ON
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân