Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABD và BDC có:
B A D ^ = D B C ^ = 60 ∘
A B D ^ = B D C ^ (so le trong)
⇒ Δ A B D đ ồ n g d ạ n g Δ B D C g , g ⇒ A B B D = B D D C ⇒ B D 2 = A B . D C = 4.9 = 36 ⇒ B D = 6 c m
Đáp án: D
ΔABD và ΔBDC có góc ABD = BDC (hai góc ở vị trí so le trong bằng nhau do AB // CD);
Và A B B D = B D D C (vì 16 20 = 20 25 )
Do đó ΔABD ~ ΔBDC (c.g.c)
Đáp án: A
a) CE = BC – BE = 25 – 9 =16 = CD
Tam giác ABE cân tại B => góc BAE = góc BEA
Tam giác CED cân tại C => góc CED = góc CDE
=> góc BEA + góc CED
= góc BAE + góc CDE
= 90 độ - góc EAD + 90 độ - góc ADE
= 180 độ - (góc EAD + góc ADE)
=180 độ - (180 độ - góc AED)
=góc AED
=> góc BEA + góc CED=góc AED
Mà góc BEA + góc CED + góc AED = 180 độ
=> góc BEA + góc CED=góc AED = 90 độ
Vì ΔABD ~ ΔBDC (cmt) nên góc A = DBC.
Ta có A = 90 ∘ nên DBC = 90 ∘ . Theo định lí Pytago, ta có
B C 2 = C D 2 - B D 2 = 25 2 - 20 2 = 152 . Vậy BC = 15cm
Đáp án: C