K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

Ta có: ΔABD vuông tại A
=> AB^2 + AD^2 = BD^2
=> BD = 13 (ĐL pitago) 
=> BD = BC =>Δ BDC cân tại B.
Kẻ đường cao BI
=> BI cũng là trung tuyến tam giác BDC
=> ID = IC.
Xét ΔABD vuông tại A và ΔBID vuông tại I.
=> ΔABD = ΔBID (cạnh huyền- góc nhọn)
=> BI = AD (2 góc tương ứng) 
Xét ΔBID vuông tại I có :
BD^2 = BI^2 + ID^2 (ĐL pitago)
=> ID = IC = 13^2 - 12^2 = √25 = 5.
=> ID + IC = DC = 5.2 = 10.

28 tháng 7 2018

(Hình vẽ chưa được chuẩn lắm, bạn vẽ lại cho chuẩn nha)

A B C D H 4 cm 6 cm

Vẽ thêm \(BH\perp CD\left(H\in CD\right)\)

Ta có tứ giác ABHD có 3 góc vuông

=> Tứ giác ABHD là hình chữ nhật

=> AB = HD = 4 cm ; AD = BH = 6 cm

=> HC = CD - HD = 12 - 4 = 8 (cm)

Ta thấy: Tam giác BHC vuông tại H

Áp dụng định lý Pytago, ta có: \(BC=\sqrt{BH^2+CH^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\) (Cm)

Vậy BC = 10 cm

11 tháng 8 2016

ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc

3 tháng 8 2017

kéo dài DA và CB cắt nhau tại K 

AB là đường trung bình ( AB//DC và 2AB = DC) 

=> B là trung điểm KC 

=> DB là trung tuyến  ΔKDC vuông tại D 

=> DB = BC = DC 

=> tam giác DBC đều 

Vậy góc KCD= 60độ 

tổng 4 góc trong tứ giác ABCD = 360độ 

=> góc ABC = 120độ

cách 2

Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật

nên ^ABH=90* (1)

Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)

Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*

\(2,\)

A B H C D

Kẻ BH vuông góc với CD tại H

Xét hai tam giác BDH và BCH:

+) BH là cạnh chung

+) Góc BHD = góc BHC = 90 độ

+) DH = CH 

=> Tam giác BDH = tam giác HCH (c.g.c)

=> BD = BC

Khác: DC = BC

=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ

Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ