Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. a) HS tự chứng minh
b) Kẻ đường cao AH, BK,chứng minh được DH = CK
Ta được H D = C D − A B 2 = 3 c m
Þ AH = 4cm Þ SABCD = 20cm2
Xét tam giác ABD và tam giác BDC có:
\(\widehat{BAD}=\widehat{DBC}=90^o\)
\(\widehat{ABD}=\widehat{BDC}\) (Cùng phụ với góc \(\widehat{ADC}\) )
\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)
Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:
\(DB^2=AB^2+AD^2=2^2+4^2=20\)
Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)
Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)
Vậy chu vi hình thang vuông bằng: 2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)
Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)
Vì ABCD là hình thang cân nên \(AD=BC,\widehat{ADC}=\widehat{BCD}\)
Xét 2 tam giác ADC và BCD có: DC chung, \(\widehat{ADC}=\widehat{BCD}\), AD=BC
\(\Rightarrow\Delta ADC=\Delta BCD\left(c.g.c\right)\Rightarrow\widehat{DAC}=\widehat{CBD}=90^0\Rightarrow AC\perp AD\)
AB // CD => \(\widehat{ABD}\) = \(\widehat{BDC}\) . Mà \(\widehat{BDC}\) = \(\widehat{ADB}\) ( DB là phân giác của \(\widehat{ADC}\))
=> \(\widehat{ADB}\) = \(\widehat{ABD}\) => Tam giác ABD cân tại A => AB = AD = BC = 4 cm
Tam giác BDC vuông tại B có \(\widehat{C}\) = 600 => BDC là nữa tam giác đều => DC = 2 BC = 2.4 = 8 cm
Vậy chu vi hình thang là AB + BC + CD + DA = 4+4+4+8 = 20 cm
Xét \(\Delta ABD\) có :
\(\begin{cases}AB=AD\\\widehat{A}=90^0\end{cases}\)=> \(\Delta ABD\) vuông cân tại A
\(\Rightarrow\begin{cases}\widehat{B_1}=\widehat{D_1}=45^0\\AB^2+AD^2=BD^2\end{cases}\)
\(\Rightarrow\begin{cases}\widehat{B_1}=\widehat{D_1}=45^0\\5^2+5^2=BD^2\end{cases}\)
\(\Rightarrow\begin{cases}\widehat{B_1}=\widehat{D_1}=45^0\\50=BD^2\end{cases}\)
\(\Rightarrow\begin{cases}\widehat{B_1}=\widehat{D_1}=45^0\\BD=5\sqrt{2}\end{cases}\)
Mà \(\widehat{D_2}+\widehat{D_1}=90^0\)
\(\Rightarrow\widehat{D_2}=45^0\)
\(\Rightarrow\widehat{ABC}=135^0\)
Mặt khác :\(\widehat{C_1}+\widehat{ABC}=180^0\)
\(\Rightarrow\widehat{C_1}=45^0\)
\(\Rightarrow\Delta BDC\) vuông cân tại B
\(\Rightarrow BD=BC=5\sqrt{2}\)
\(\Rightarrow\left(5\sqrt{2}\right)^2+\left(5\sqrt{2}\right)^2=CD^2\)
\(\Rightarrow50+50=CD^2\)
\(\Rightarrow CD=10\)
\(\Rightarrow S_{ABCD}=\frac{\left(10+5\right).5}{2}=\frac{15.5}{2}=\frac{75}{2}\left(cm^2\right)\)
Vậy diện tích ABCD là \(\frac{75}{2}cm^2\)
Ta có AB = AD => Góc ABD = góc ADB = 45 độ.
Mà BDC = ABD (so le trong) và ADB = BCD ( cùng phụ góc BDC)
=> Tam giác BDC là tam giác vuông cân tại B
Xét tam giác ABD, áp dụng Pytago ta được BD = 5 căn 2. cm
=> CD = 10 cm.
=> Diện tích hình thang ABCD là 37,5 cm2
(Bạn tự vẽ hình nhé. sai chỗ nào mong bạn thông cảm :)))