K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [A_1, C] ?o?n th?ng h: ?o?n th?ng [A, D] ?o?n th?ng i: ?o?n th?ng [B, C] ?o?n th?ng j: ?o?n th?ng [A, C] ?o?n th?ng k: ?o?n th?ng [B, D] ?o?n th?ng l: ?o?n th?ng [A, M] ?o?n th?ng m: ?o?n th?ng [A, N] A = (0.14, 4.82) A = (0.14, 4.82) A = (0.14, 4.82) B = (5.32, 4.88) B = (5.32, 4.88) B = (5.32, 4.88) D = (3.64, 1.1) D = (3.64, 1.1) D = (3.64, 1.1) C = (8.82, 1.16) C = (8.82, 1.16) C = (8.82, 1.16) ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k

a. Do AB//CD nên góc ABD = BDC, ADB = CBD. Suy ra \(\Delta ABD=\Delta CDB\left(g-c-g\right)\Rightarrow AB=CD,AD=BC\)

b. Dễ thấy \(\Delta AOB=\Delta COD\left(g-c-g\right)\Rightarrow OA=OC,OB=OD\)

c. Xét tam giác ABC có AM và BO là các đường trung tuyến nên E là trọng tâm, vậy OB = 2EO.

Tương tự DF=2FO. Mà OD = OB. Vậy BE = EF = DF.

25 tháng 3 2019

15 tháng 11 2023

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

OD=OB

Do đó: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

b: Xét ΔOAB và ΔOCD có

OA=OC

\(\widehat{AOB}=\widehat{COD}\)

OB=OD

Do đó: ΔOAB=ΔOCD

=>AB=CD

Xét ΔABC và ΔCDA có

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA

=>\(\widehat{ABC}=\widehat{CDA}\)

c: Xét ΔOBN và ΔODM có

OB=OD

\(\widehat{OBN}=\widehat{ODM}\)

BN=DM

Do đó: ΔOBN=ΔODM

=>\(\widehat{BON}=\widehat{DOM}\)

mà \(\widehat{DOM}+\widehat{BOM}=180^0\)

nên \(\widehat{BON}+\widehat{BOM}=180^0\)

=>\(\widehat{MON}=90^0\)

=>M,O,N thẳng hàng

d: Xét ΔOAE và ΔOCF có

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)

Do đó: ΔOAE=ΔOCF

=>\(\widehat{AOE}=\widehat{COF}\)

mà \(\widehat{AOE}+\widehat{EOC}=180^0\)

nên \(\widehat{COF}+\widehat{COE}=180^0\)

=>\(\widehat{FOE}=180^0\)

=>F,O,E thẳng hàng

mà OE=OF

nên O là trung điểm của EF

15 tháng 12 2016

dễ v~~~ 

16 tháng 12 2016

mình ko biết cách c/m thẳng hàng ở câu c thôi ai giúp với

19 tháng 7 2023

loading...

Xét \(\Delta\)AOD ta có: AO + OD > AD (trong 1 tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Xét \(\Delta\) OCD ta có: BO + OC > BC ( trong 1 tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Cộng vế với vế ta có: AO + OD + BO + OC > AD + BC 

                                  (AO + OC) + ( OD + OB > AD + BC

                                   AC+ BD > AD + BC 

Chứng Minh tương tự ta có: AC + BD > AB + CD 

16 tháng 12 2016

Ta có hình vẽ:

O A B C D M N

a/ Xét tam giác OAC và tam giác OBD có:

OA = OB (GT)

góc AOC = góc BOD (đối đỉnh)

OC = OD (GT)

=> tam giác OAC = tam giác OBD (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)

=> góc CAO = góc OBD (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AC // BD (đpcm)

b/ Xét tam giác OAD và tam giác OBC có:

OA = OB (GT)

góc AOD = góc BOC (đối đỉnh)

OC = OD (GT)

=> tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)

Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)

=> góc DAO = góc CBO (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AD // BC 9đpcm)

c/ Ta có: COM = DON (đối đỉnh)

Ta có: góc AOD + góc AOM + góc COM = 1800

=> góc AOD + góc AOM + góc DON = 1800

hay góc MON = 1800

hay M,O,N thẳng hàng

17 tháng 12 2016

A B C D O M N a) Xét ΔCAO và ΔDBO có:

OA=OB (gt)

\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)

OC=OD (gt)

=> ΔCAO=ΔDBO (c.g.c)

=> AC=BD (hai cạnh tương ứng)

ΔCAO=ΔDBO

=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên

=> AC//BD. (đpcm)

b) Xét ΔAOD và ΔBOC có:

OA=OB (gt)

\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)

OD=OC (gt)

=> ΔAOD=ΔBOC (c.g.c)

=> AD=BC (hai cạnh tương ứng)

ΔAOD=ΔBOC

=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên

=> AD//BC (đpcm)

c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)

Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)

=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)

Vậy ba điểm M,O,N thẳng hàng