Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)d\perp m,ab\perp m\Leftrightarrow d//ab\)( từ vuông góc đến song song)
\(b)\widehat{ABA}=60^0\)( câu này bạn tự tính )
\(c)\widehat{HBA}=\frac{\widehat{ABa}}{2}=\frac{120^0}{2}=60^0\)và \(\widehat{HAB}=60^0\)
\(\Rightarrow\widehat{AHB}=60^0\)
\(d)\)Vì Ba là tia đối của BN nên \(\widehat{ABA},\widehat{CBN}\)là 2 góc đối nhau nên 2 tia phân giác của nó đối nhau hay BH và Bt đối nhau
ài 1 a)như hình vẽ ta thấy góc A= góc B=90° => a//b( vì có 2 góc so le trong bằng nhau) b) vì a//b nên D1=E2=60°( hai góc đồng vị) Mà E1+E2=180°=> E1=180-60=130°
a, Ta có: xy//x'y' nên xAB ^ = ABy' (hai góc so le trong).
AA' là tia phân giác của xAB nên A1 = A2 = 1/2 xAB
BB' là tia phân giác của ABy' nên B1 = B2 = 1/2 ABy'
Từ trên ta có A2 = B1
Mà hai góc ở vị trí so le trong, nên
=> AA' // BB/ (có 2 góc so le trong bằng nhau)
b, xy//x'y' nên A1 = AA'B (2 góc so le trong)
AA'//BB' nên A1 = AB'B(2 góc đồng vị)
Vậy AA'B = AB'B
a) nên (hai góc so le trong). (1)
là tia phân giác của nên: . (2)
là tia phân giác của nên: . (3)
Từ (2) và (3) ta có:
Mà hai góc ở vị trí so le trong, nên từ (1), (2), (3) ta có: // (có 2 góc so le trong bằng nhau).
b) nên (hai góc so le trong).
nên (hai góc đồng vị).
Vậy .
a) // nên (hai góc so le trong). (1)
là tia phân giác của nên: (2)
là tia phân giác của nên: (3)
Từ (1), (2), (3) ta có: .
Mà hai góc ở vị trí so le trong, nên
b) // nên (hai góc so le trong).
nên (hai góc đồng vị).
Vậy .
a) // nên (hai góc so le trong). (1)
là tia phân giác của nên: (2)
là tia phân giác của nên: (3)
Từ (1), (2), (3) ta có: .
Mà hai góc ở vị trí so le trong, nên
b) // nên (hai góc so le trong).
nên (hai góc đồng vị).
Vậy .
a) Xét tam giác ABC có Góc A + góc B+ góc C = 180 độ ( định í tổng 3 góc trong một tam giác
Suy ra góc C = 40 độ
b) Xét tam giác vuông BHC có góc BAC + góc ABH = 90 độ => góc ABH = 50 độ
Xét tam giác vuông HBC có góc BCA+ góc CBH = 90 độ=> góc CAH = 50 độ
Vì góc ABH = góc CAH
nên BH là phân giác của góc ABH)
c) vì Ax song song với BH
Cy song song với BH
nên Ax vuông góc với AC, Cy vuông góc với AC
Ta có góc BCy = góc BCA + góc ACy= 40 độ + 90 độ = 130 độ
Góc xAB + góc ABC + góc BCy = 90 độ + 60 độ + 130 độ = 280 độ
1: Xét ΔOIA vuông tại I và ΔOIB vuông tại I có
OI chung
IA=IB
=>ΔOIA=ΔOIB
=>OA=OB
=>ΔOAB cân tại O
2: OA+AM=OM
OB+BN=ON
mà OA=OB và AM=BN
nên OM=ON
=>ΔOMN cân tại O
Xét ΔOMN có OA/OM=OB/ON
nên AB//MN