K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2023

loading...  loading...  loading...  

3 tháng 5 2021

Giup mk vs

a) Xét tam giác ABD và tam giác EBD có

BAD=BED(=90 ĐỘ)

ABD=EBD ( BD là tia pg của ABC)

BD cạnh chug

Do đó t/giác ABD= t/ giác EBD(chgn)

b) Vì t/giác ABC vuông ở A nên

suy ra AB^2+AC^2=BC^2 ( đl PY TA GO)

          AB^2+12^2=15^2

        AB^2+144=225

        AB^2=81

         AB^2=9^2

         AB=9 cm

Mà AB=BE( t/giác ABD=t/giác EBD)

Do đó BE=9 cm

( sr bạn nhé í c mình chx nghĩ rabucminh☹)

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)

20 tháng 2 2021

Cảm ơn ạ =))

2 tháng 7 2018

a) Xét tứ giác AIHK có \(\widehat{AIH}+\widehat{IAK}+\widehat{AKH}=270^o\Rightarrow\widehat{IHK}=90^o\)

Vậy nên \(HI\perp HK\)

b) Do IA và HK cùng vuông góc với AC nên IA // HK

Vậy thì \(\widehat{IAH}=\widehat{KHA}\)   (So le trong)

Xét tam giác IAH và tam giác KHA có:

\(\widehat{AIH}=\widehat{HKA}=90^o\)

Cạnh AH chung

\(\widehat{IAH}=\widehat{KHA}\)   

\(\Rightarrow\Delta AIH=\Delta HKA\)     (Cạnh huyền - góc nhọn)

\(\Rightarrow IA=HK.\)

c)  Xét tam giác IAH và tam giác HKI có:

\(\widehat{AIH}=\widehat{KHI}=90^o\)

Cạnh IH chung

\(IA=HK\)   

\(\Rightarrow\Delta AIH=\Delta KHI\)     (Hai cạnh góc vuông)

\(\Rightarrow AH=IK.\)

d) Ta thấy ngay các cặp góc so le trong bằng nhau nên \(\Delta IOA=\Delta KOH\left(g-c-g\right)\Rightarrow OI=OK,OA=OH\)

Xét tam giác vuông IAH có IO là trung tuyến ứng với cạnh huyền nên OH = OA = OI.

Vậy nên OA = OI = OH = OK.

e) 

1. Nếu tam giác ABC cân thì AH là đường cao đồng thời trung tuyến. Vậy thì AH = BH = CH.

Xét tam giác cân BHA có HI là đường cao nên đồng thời là đường trung tuyến. Vậy nên I là trung điểm AB.

Hoàn toàn tương tự ta có K là trung điểm AC.

2.  Tam giác ABC vuông cân tại A nên \(\widehat{ACB}=45^o\)

IA = AB/2; AK = AC/2 mà AB = AC nên AI = AK.

Vậy thì tam giác IAK cũng vuông cân tại A.

Vậy nên \(\widehat{AKI}=45^o\) 

Từ đó ta có \(\widehat{AKI}=\widehat{ACB}=45^o\)

Chúng lại ở vị trí đồng vị nên suy ra IK // BC.

f) Ta có AM = MC nên \(\widehat{MAC}=\widehat{MCA}\)

Lại có \(\widehat{MCA}=\widehat{AHK}\)   (Cùng phụ với góc \(\widehat{KHC}\)  )

Suy ra \(\widehat{MAC}=\widehat{AHK}\)

Lại có \(\widehat{OKA}=\widehat{OHA}\)

Vậy nên \(\widehat{MAK}+\widehat{OKA}=\widehat{AHK}+\widehat{IHA}=90^o\)

Gọi J là giao điểm của AM và IK thì \(\widehat{AJK}=90^o\)  hay \(KI\perp AM\)

9 tháng 2 2019

A B C H M N 1 2 I K

a) Xét \(\Delta AHB\)\(\Delta AHC\)có :

\(\hept{\begin{cases}HB=HC\\AH\\AB=AC\end{cases}}\)( Bạn tự ghi lời giải thích nha)

\(\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 cạnh tương ứng)

Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)( 2 góc kề bù )

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AH\perp BC\)

b) Xét \(\Delta AHM\left(\widehat{AMH}=90^o\right)\)và \(\Delta AHN\left(\widehat{ANH}=90^o\right)\)có :

\(\hept{\begin{cases}AH\\\widehat{A_1}=\widehat{A_2}\end{cases}}\)( bạn tự nêu lí do )

\(\Rightarrow\Delta AHM=\Delta AHN\)( Cạnh huyền - góc nhọn )

9 tháng 2 2019

câu c đâu r bn (mk đang cần câu c ak)

a: Xét ΔNAB có

NM vừa là đường cao, vừa là trung tuyến

nên ΔBAN cân tại N

b: Xét ΔBAC có

M là trung điểm của BA

MN//AC

Do đó: N là trung điểm của BC