Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ:
Ta có: ABCD là hình vuông \(\Rightarrow\widehat{BAC}=\widehat{ABC}=\widehat{BCD}=\widehat{ADC}=90^o.\)và \(AD=BC\)
ta có: \(\hept{\begin{cases}\widehat{ADI}=\widehat{ADC}-\widehat{IDC}=90^o-15^o=75^o\\\widehat{BCI}=\widehat{BCD}-\widehat{ICD}=90^o-15^o=75^o.\end{cases}\Rightarrow\widehat{ADI}=\widehat{BCI}\left(=75^o\right)}\)
Xét \(\Delta ADI\)và \(\Delta BCI\)có: \(\hept{\begin{cases}AD=BC\left(cmt\right)\\\widehat{ADI}=\widehat{BCI}\left(cmt\right)\\ID=IC\left(gt\right)\end{cases}}\Rightarrow\Delta ADI=\Delta BCI\left(c.g.c\right)\)
\(\Rightarrow\widehat{DAI}=\widehat{CBI}\)(2 góc tương ứng)
ta lại có: \(\hept{\begin{cases}\widehat{IBA}=\widehat{CBA}-\widehat{CBI}\\\widehat{IAB}=\widehat{BAD}-\widehat{DAI}\end{cases}}\)mà \(\hept{\begin{cases}\widehat{CBA}=\widehat{BAD}\left(=90^o\right)\\\widehat{CBI}=\widehat{DAI}\left(cmt\right)\end{cases}\Rightarrow\widehat{IBA}=\widehat{IAB}}\)
Xét \(\Delta IAB\)có: \(\widehat{IBA}=\widehat{IAB}\)\(\Rightarrow\Delta IAB\)cân
\(\Rightarrow AI=BI\left(đpcm\right)\)
a: \(\widehat{B}=90^0\)
Xét ΔABC có \(\widehat{C}< \widehat{A}< \widehat{B}\)
nên AB<BC<AC
b: Xét ΔBAC có
BA<BC
mà AH là hình chiếu của BA trên AC
và CH là hình chiếu của BC trên AC
nên AH<CH
Hình NÀY mà, bn tự vẽ nha:
a, Do AB =AC ( gt)
=> tam giác ABC cân tại A
=> Góc ABI = góc ACI
Xét tam giác ABI và tam giÁC ACI có:
AB =AC ( gt)
ABI =ACI ( c/m trên)
BI = CI ( gt)
=> tam giác ABI= tam gics ACI (c.g.c)
=> góc BAI = GÓC CAI (2 GÓC TƯƠNG ỨNG)
=> AI LÀ TIA PHÂN GIÁC GÓC BAC
b, TỐI MIK BÀY TIẾP GIUWF MIK BẬN QUÁ
1) Xét ΔABI và ΔEBI có
BA=BE(gt)
\(\widehat{ABI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{ABE}\))
BI chung
Do đó: ΔABI=ΔEBI(c-g-c)
Suy ra: \(\widehat{BAI}=\widehat{BEI}\)(hai góc tương ứng)
mà \(\widehat{BAI}=90^0\)(gt)
nên \(\widehat{BEI}=90^0\)
2) Xét ΔAID vuông tại A và ΔEIC vuông tại E có
IA=IE(ΔBAI=ΔBEI)
\(\widehat{AID}=\widehat{EIC}\)(hai góc đối đỉnh)
Do đó: ΔAID=ΔEIC(Cạnh góc vuông-góc nhọn kề)
Suy ra: ID=IC(Hai cạnh tương ứng)
Xét ΔIDC có ID=IC(cmt)
nên ΔIDC cân tại I(Định nghĩa tam giác cân)
3) Ta có: ΔAID=ΔEIC(cmt)
nên AD=EC(Hai cạnh tương ứng)
Xét ΔBDC có
\(\dfrac{BA}{AD}=\dfrac{BE}{EC}\)(Vì BA=BE; AD=EC)
nên AE//DC(Định lí Ta lét đảo)