K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

Hình vẽ:

Ta có: ABCD là hình vuông \(\Rightarrow\widehat{BAC}=\widehat{ABC}=\widehat{BCD}=\widehat{ADC}=90^o.\)và \(AD=BC\)

ta có: \(\hept{\begin{cases}\widehat{ADI}=\widehat{ADC}-\widehat{IDC}=90^o-15^o=75^o\\\widehat{BCI}=\widehat{BCD}-\widehat{ICD}=90^o-15^o=75^o.\end{cases}\Rightarrow\widehat{ADI}=\widehat{BCI}\left(=75^o\right)}\)

Xét \(\Delta ADI\)và \(\Delta BCI\)có: \(\hept{\begin{cases}AD=BC\left(cmt\right)\\\widehat{ADI}=\widehat{BCI}\left(cmt\right)\\ID=IC\left(gt\right)\end{cases}}\Rightarrow\Delta ADI=\Delta BCI\left(c.g.c\right)\)

\(\Rightarrow\widehat{DAI}=\widehat{CBI}\)(2 góc tương ứng)

ta lại có: \(\hept{\begin{cases}\widehat{IBA}=\widehat{CBA}-\widehat{CBI}\\\widehat{IAB}=\widehat{BAD}-\widehat{DAI}\end{cases}}\)mà \(\hept{\begin{cases}\widehat{CBA}=\widehat{BAD}\left(=90^o\right)\\\widehat{CBI}=\widehat{DAI}\left(cmt\right)\end{cases}\Rightarrow\widehat{IBA}=\widehat{IAB}}\)

 Xét \(\Delta IAB\)có: \(\widehat{IBA}=\widehat{IAB}\)\(\Rightarrow\Delta IAB\)cân

\(\Rightarrow AI=BI\left(đpcm\right)\)

10 tháng 1 2016

xin lỗi tớ chưa học lớp 7

21 tháng 1 2018

góc AMC=60độ

a: \(\widehat{B}=90^0\)

Xét ΔABC có \(\widehat{C}< \widehat{A}< \widehat{B}\)

nên AB<BC<AC

b: Xét ΔBAC có 

BA<BC

mà AH là hình chiếu của BA trên AC

và CH là hình chiếu của BC trên AC
nên AH<CH

1 tháng 8 2017

Hình NÀY mà, bn tự vẽ nha:

a, Do AB =AC ( gt)

=> tam giác ABC cân tại A

=> Góc ABI = góc ACI

Xét tam giác ABI và tam giÁC ACI có:

AB =AC ( gt)

ABI =ACI ( c/m trên)

BI = CI ( gt)

=> tam giác ABI= tam gics ACI (c.g.c)

=> góc BAI = GÓC CAI (2 GÓC TƯƠNG ỨNG)

=> AI LÀ TIA PHÂN GIÁC GÓC BAC

b, TỐI MIK BÀY TIẾP GIUWF MIK BẬN QUÁ

1) Xét ΔABI và ΔEBI có

BA=BE(gt)

\(\widehat{ABI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{ABE}\))

BI chung

Do đó: ΔABI=ΔEBI(c-g-c)

Suy ra: \(\widehat{BAI}=\widehat{BEI}\)(hai góc tương ứng)

mà \(\widehat{BAI}=90^0\)(gt)

nên \(\widehat{BEI}=90^0\)

2) Xét ΔAID vuông tại A và ΔEIC vuông tại E có

IA=IE(ΔBAI=ΔBEI)

\(\widehat{AID}=\widehat{EIC}\)(hai góc đối đỉnh)

Do đó: ΔAID=ΔEIC(Cạnh góc vuông-góc nhọn kề)

Suy ra: ID=IC(Hai cạnh tương ứng)

Xét ΔIDC có ID=IC(cmt)

nên ΔIDC cân tại I(Định nghĩa tam giác cân)

3) Ta có: ΔAID=ΔEIC(cmt)

nên AD=EC(Hai cạnh tương ứng)

Xét ΔBDC có 

\(\dfrac{BA}{AD}=\dfrac{BE}{EC}\)(Vì BA=BE; AD=EC)

nên AE//DC(Định lí Ta lét đảo)