K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

A\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)

A=\(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

A=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

A=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)

A=\(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2015}+\frac{1}{2016}\)

B-A=\(\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)-\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2015}+\frac{1}{2016}\right)\)

B-A=1/1008

12 tháng 3 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2014}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)

\(=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\)

\(B=\frac{1}{1008.2014}+\frac{1}{1009.2013}+...+\frac{1}{2014.1008}\)

\(=\frac{1}{3022}\left(\frac{3022}{1008.2014}+\frac{3022}{1009.2013}+...+\frac{3022}{2014.1008}\right)\)

\(=\frac{1}{3022}\left(\frac{1008}{1008.2014}+\frac{2014}{1008.2014}+...+\frac{2014}{1008.2014}+\frac{1008}{1008.2014}\right)\)

\(=\frac{1}{3022}\left(\frac{1}{1008}+\frac{1}{2014}+\frac{1}{1009}+\frac{1}{2013}+...+\frac{1}{2014}+\frac{1}{1008}\right)\)

\(=\frac{2}{3022}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)\)

\(=\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)\)

=> \(\frac{A}{B}=\frac{\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}}{\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)}=\frac{1}{\frac{1}{1511}}=1511\)

Vậy....

=1-1/2+1/2-1/3+1/3-1/4+1*4-1/5+1/5+1/6=1-1/6=5/6

ok xong

1 tháng 5 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}=1-\frac{1}{2}+\)+.... \(+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}=\frac{5}{6}\)

3 tháng 5 2019

lay

7 tháng 7 2017

\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)

\(A=\frac{1}{4.6}+\frac{1}{10.12}+\frac{1}{18.20}+...+\frac{1}{810.812}\)

.......

~ Chúc học tốt ~ 

Ai ngang qua xin để lại 1 L - I - K - E

7 tháng 7 2017

\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{27.28.29.30}\)

\(3A=3.\left(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+......+\frac{1}{27.28.29.30}\right)\)

\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+..........+\frac{3}{27.28.29.30}\)

\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)

\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)

\(3A=\frac{1}{6}-\frac{1}{24360}\)

\(3A=\frac{1353}{8120}\)

\(A=\frac{1353}{8120}:3\)

\(A=\frac{451}{8120}\)