Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = n . (1 + 4) vậy A là số lẻ vì cứ cách 4 đến 5 là số lẻ
B = 2n . (1 + 5) vậy B là số chẵn vì cách 2 đến 3 là số chẵn
đấp án : xong nha bạn
A=số lẻ x số chẵn; B=số lẻ x số lẻ (vì có +1 và +5)
-> A là số chẵn, B là số lẻ
Bài 1:
Ta có: (3a+1)(b-5)=21=1.21=21.1=3.7=7.3. Kẻ bảng:
+/ 3a+1=1=>a=0
b-5=21=>b=26
+/ 3a+1=21 => a=20/3 (Loại)
+/ 3a+1=3 => a=2/3 (Loại)
+/ 3a+1=7 => a=2
b-5=3 => b=8
ĐS: a,b ={(0, 26); (2, 8)}
Bài 2:
Ta có: 3n+4 chia hết cho 2n-1 => 2(3n+4) chia hết cho 2n-1
2(3n+4)=6n+8=6n-3+11=3(2n-1)+11
Vậy để 3n+4 chia hết cho 2n-1 thì 11 phải chia hết cho 2n-1
=> Có 2 trường hợp:
+/ 2n-1=1 => n=1
+/ 2n-1=11 => n=6
ĐS: n={1;6}
A=1+5+9+13+...+1997+2001
A=(1+2001)x501:2
A=2002x501:2
A=501501
B=2+5+8+...+2003+2006
B=(2+2006)x669:2
B=2008x669:2
B=671676
C=367+361+355+...+7+1
C=(367+1)x62:2
C=368x62:2
C=11408
Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
⟹3n⋮8
⟺n⋮8(1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
⟹n⋮5(2)
Từ (1) và (2)⟹n⋮40
Vậy n=40k thì ... Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
⟹3n⋮8
⟺n⋮8(1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
⟹n⋮5(2)
Từ (1) và (2)⟹n⋮40
Vậy n=40k
\(A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}\)
\(=1+\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}\)
\(=1+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=1+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=2-\dfrac{2}{n+1}\) ko là số tự nhiên
2n + 1 chia hết n - 5
<=> 2n - 10 + 11 chia hết cho n - 5
<=> 11 chia hết cho n - 5 mà n là số tự nhiên
<=> n - 5 thuộc {-11;-1;1;11}
n - 5 = -11 ; n = -6 (loại)
n -5 = -1 ; n = 4 (chọn)
n - 5 = 1 ; n = 6 (chọn)
n - 5 = 11 ; n = 16 (chọn)
Vậy n \(\in\){4;6;16}
Ta có:
2n+1 chia n-5 dư 11
Để 2n+1 chia hết cho n-5 thì n-5 thuộc Ư(11)
Ta có bảng:
2n+1 | 11 | 1 | -11 | -1 |
n | 5 | 0 | -6(loại | -1(loại) |
Vậy n={0;5}
Từ 1 đến 2n+1 có: (2n+1-1):2+1=n+1(số hạng)
=>B=(1+2n+1).(n+1):2
=>B=(2n+2).(n+1):2
=>B=2.(n+1).(n+1):2
=>B=(n+1)2.2:2
=>B=(n+1)2
Vậy B là bình phương của n+1