Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Não đặc-.-
Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek
Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương
Bài làm:
Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)
\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)
\(=1-1=0\)
Dấu "=" xảy ra khi: \(a=b=c\)
Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r
Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.
Khôi Bùi Mysterious Person DƯƠNG PHAN KHÁNH DƯƠNG JakiNatsumi
Sửa đề: Chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Cách 1: Áp dụng BĐT Bunhiacopxki ta có đpcm.
Cách 2:BĐT \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (đúng)
Ta có đpcm.
Đẳng thức xảy ra khi a = b= c
không đâu cá tiền luôn 500 đồng lun sợ gì :))))) đùa thui ko có đâu nhé