Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+y=2\left(m-1\right)\left(1\right)\\2x-y=m+8\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được:
\(3x=3m+6=3\left(m+2\right)\) \(\Leftrightarrow x=m+2\) Thay vào (2) ta được:
\(\Rightarrow2\left(m+2\right)-y=m+8\) \(\Leftrightarrow y=2m+4-m-8=m-4\)
\(\Rightarrow x^2+y^2=\left(m+2\right)^2+\left(m-4\right)^2=m^2+4m+4+m^2-8m+16=2m^2-4m+20=2m^2-4m+2+18=2\left(m^2-2m+1\right)+18=2\left(m-1\right)^2+18\ge18\)
GTNN của \(x^2+y^2=18\Leftrightarrow m=1\)
\(\left\{{}\begin{matrix}x+y=2\left(m-1\right)\left(1\right)\\2x-y=m+8\left(2\right)\end{matrix}\right.\)
Từ (1) ⇒ \(y=2\left(m-1\right)-x\)
Thay vào (2), ta có:
\(2x-2\left(m-1\right)+x=m+8\)
\(\Leftrightarrow3x-2m+2=m+8\\ \Leftrightarrow3x=3m+6\\ \Leftrightarrow x=m+2\)
\(\Rightarrow y=2\left(m-1\right)-\left(m+2\right)\\ \Leftrightarrow y=2m-2-m-2\\ \Leftrightarrow y=m-4\)
Ta có:
\(x^2+y^2=\left(m+2\right)^2+\left(m-4\right)^2\\ =m^2+4m+4+m^2-8m+16\\ =2m^2-4m+20\\ =2\left(m-1\right)^2+18\)
\(Vì\left(m-1\right)^2\ge0\forall m\in R\\ \Rightarrow2\left(m-1\right)^2+18\ge18\\ \Rightarrow x^2+y^2\ge18\)
Dấu "=" xảy ra ⇔ \(m=1\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=3\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\2y=3-x=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)
hệ pt <=> 2x-4y = 6m+2
2x+y = m+2
<=> 2x-4y-2x-y = 6m+2-m-2
2x+y = m+2
<=> -5y=5m
2x+y = m+2
<=> x=m+1 và y=-m
Khi đó : x^2-y^2 = (m+1)^2-(-m)^2 = m^2+2m+1-m^2 = 2m+1
Hình như đề sai hoặc thiếu rùi bạn ơi !
Tk mk nha
\(\left\{{}\begin{matrix}x+mx=2\\mx-2y=1\end{matrix}\right.\)
Nếu m=0 \(\Rightarrow\left\{{}\begin{matrix}x=2\\-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{-1}{2}< 0\end{matrix}\right.\) (L)
Nếu m≠0 \(\Rightarrow\left\{{}\begin{matrix}mx+m^2y=2m\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)
Trừ từng vế của (1) cho (2) ta được:
\(m^2y+2y=2m-1\) \(\Leftrightarrow\left(m^2+2\right)y=2m-1\) \(\Leftrightarrow y=\dfrac{2m-1}{m^2+2}\) Thay vào (2) ta được:
\(mx-2\cdot\dfrac{2m-1}{m^2+2}=1\) \(\Leftrightarrow mx=1+\dfrac{4m-2}{m^2+2}=\dfrac{m^2+2+4m-2}{m^2+2}=\dfrac{m\left(m+4\right)}{m^2+2}\)
\(x=\dfrac{m+4}{m^2+2}\)
Vì x>0, y>0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m^2+2}>0\\\dfrac{m+4}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m-1>0\\m+4>0\end{matrix}\right.\) Vì \(m^2+2\ge2>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>-4\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{1}{2}\) Vậy...
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2