Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow na_{n+2}-na_{n+1}=2\left(n+1\right)a_{n+1}-2\left(n+1\right)a_n\)
\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=2.\dfrac{a_{n+1}-a_n}{n}\)
Đặt \(b_n=\dfrac{a_{n+1}-a_n}{n}\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=1\\b_{n+1}=2b_n\end{matrix}\right.\) \(\Rightarrow b_n=2^{n-1}\Rightarrow a_{n+1}-a_n=n.2^{n-1}\)
\(\Leftrightarrow a_{n+1}-\left[\dfrac{1}{2}\left(n+1\right)-1\right]2^{n+1}=a_n-\left[\dfrac{1}{2}n-1\right]2^n\)
Đặt \(c_n=a_n-\left[\dfrac{1}{2}n-1\right]2^n\Rightarrow\left\{{}\begin{matrix}c_1=a_1-\left[\dfrac{1}{2}-1\right]2^1=2\\c_{n+1}=c_n=...=c_1=2\end{matrix}\right.\)
\(\Rightarrow a_n=\left[\dfrac{1}{2}n-1\right]2^n+2=\left(n-2\right)2^{n-1}+2\)
b.
Câu b này đề sai
Với \(n=1\Rightarrow\sqrt{a_1-1}=0< \dfrac{1\left(1+1\right)}{2}\)
Với \(n=2\Rightarrow\sqrt{a_1-1}+\sqrt{a_2-1}=0+1< \dfrac{2\left(2+1\right)}{2}\)
Có lẽ đề đúng phải là: \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\dfrac{n\left(n-1\right)}{2}\)
Ta sẽ chứng minh: \(\sqrt{a_n-1}\ge n-1\) ; \(\forall n\in Z^+\)
Hay: \(\sqrt{\left(n-2\right)2^{n-1}+1}\ge n-1\)
\(\Leftrightarrow\left(n-2\right)2^{n-1}+2n\ge n^2\)
- Với \(n=1\Rightarrow-1+2\ge1^2\) (đúng)
- Với \(n=2\Rightarrow0+4\ge2^2\) (đúng)
- Giả sử BĐT đúng với \(n=k\ge2\) hay \(\left(k-2\right)2^{k-1}+2k\ge k^2\)
Ta cần chứng minh: \(\left(k-1\right)2^k+2\left(k+1\right)\ge\left(k+1\right)^2\)
\(\Leftrightarrow\left(k-1\right)2^k+1\ge k^2\)
Thật vậy: \(\left(k-1\right)2^k+1=2\left(k-2\right)2^{k-1}+2^k+1\ge2k^2-4k+2^k+1\)
\(\ge2k^2-4k+5=k^2+\left(k-2\right)^2+1>k^2\) (đpcm)
Do đó:
\(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}>0+1+...+n-1=\dfrac{n\left(n-1\right)}{2}\)
\(\Leftrightarrow n\left(a_{n+2}-a_{n+1}\right)=\left(n+1\right)\left(a_{n+1}-a_n\right)+3n\left(n+1\right)\)
\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=\dfrac{a_{n+1}-a_n}{n}+3\)
Đặt \(\dfrac{a_{n+1}-a_n}{n}=b_n\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=-6\\b_{n+1}=b_n+3\end{matrix}\right.\)
\(\Rightarrow b_n\) là cấp số cộng với công sai 3
\(\Rightarrow b_n=b_1+\left(n-1\right)d=-6+3\left(n-1\right)=3n-9\)
\(\Rightarrow a_{n+1}-a_n=n\left(3n-9\right)=3n^2-9n\)
\(\Rightarrow a_{n+1}-\left(n+1\right)^3+6\left(n+1\right)^2-5\left(n+1\right)=a_n-n^3+6n^2-5n\)
Đặt \(a_n-n^3+6n^2-5n=c_n\Rightarrow\left\{{}\begin{matrix}c_1=6-1+6-5=6\\c_{n+1}=c_n=...=c_1=6\end{matrix}\right.\)
\(\Rightarrow a_n=n^3-6n^2+5n+6\)
Lời giải:
\(C=\lim\limits_{x\to +\infty}\left[x\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x})...(1+\frac{a_n}{x})}-x\right]\)
\(=\lim\limits_{x\to +\infty}x\left[\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x}).....(1+\frac{a_n}{x})}-1\right]\)
\(=\lim\limits _{x\to +\infty}\frac{\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x}).....(1+\frac{a_n}{x})}-1}{(1+\frac{a_1}{x})(1+\frac{a_2}{x})..(1+\frac{a_n}{x})-1}.\frac{(1+\frac{a_1}{x})(1+\frac{a_2}{x})...(1+\frac{a_n}{x})-1}{\frac{1}{x}}\)
\(=\lim\limits _{x\to +\infty}(A.B)=\lim\limits_{x\to +\infty}A.\lim\limits_{x\to +\infty}B\)
Với $A$. Đặt \(\sqrt[n]{\prod_{i=1}^n (1+\frac{a_i}{x})}=u\). \(x\to +\infty\Rightarrow \frac{a_i}{x}\to 0\Rightarrow 1+\frac{a_i}{x}\to 1\Rightarrow u\to 1\)
\(\lim\limits_{x\to +\infty}A=\lim\limits_{u\to 1}\frac{u-1}{u^n-1}=\lim\limits_{u\to 1}\frac{1}{u^{n-1}+...+1}=\frac{1}{n}\)
Với $B$
\(\lim\limits _{x\to +\infty}B=\lim\limits _{x\to +\infty}\frac{1+\frac{a_1+a_2+..+a_n}{x}+\frac{a_1a_2+a_2a_3+...+a_{n-1}a_n}{x^2}+....-1}{\frac{1}{x}}\)
\(=\lim\limits _{x\to +\infty}\left(a_1+a_2+...+a_n+\frac{a_1a_2+...+a_{n-1}a_n}{x}+...\right)=a_1+a_2+..+a_n\)
Do đó: $C=\frac{a_1+a_2+...+a_n}{n}$
Đáp án C
a) Ta có: \({a_{n + 1}} = 3\left( {n + 1} \right) + 1 = 3n + 3 + 1 = 3n + 4\)
Xét hiệu: \({a_{n + 1}} - {a_n} = \left( {3n + 4} \right) - \left( {3n + 1} \right) = 3n + 4 - 3n - 1 = 3 > 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({a_{n + 1}} > {a_n}\).
a) Ta có: \({b_{n + 1}} = - 5\left( {n + 1} \right) = - 5n - 5\)
Xét hiệu: \({b_{n + 1}} - {b_n} = \left( { - 5n - 5} \right) - \left( { - 5n} \right) = - 5n - 5 + 5n = - 5 < 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({b_{n + 1}} < {b_n}\).
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[n]{\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)}-x\right)\\ =\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)-x^n}{\sqrt[n]{\left(\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)\right)^{n-1}}+...+x^{n-1}}\right)\)
= hệ số xn-1 trên tử/hệ số xn-1 dưới mẫu = \(\dfrac{a_1+a_2+...+a_n}{n}\)