K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

Ta có:

\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow abc^2+ab^2c+a^2bc-ab-bc-ca=0\left(1\right)\)

Ta cần chứng minh

\(b\left(a^2-bc\right)\left(1-ac\right)=a\left(1-bc\right)\left(b^2-ac\right)\)

\(\Leftrightarrow ab^2c^2-a^2bc^2+ab^3c-b^2c-a^3bc+a^2c-ab^2+a^2b=0\)

\(\Leftrightarrow b\left(abc^2+ab^2c-bc-ab\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)

\(\Leftrightarrow b\left(ac-a^2bc\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)

\(\Leftrightarrow-a\left(ab^2c+abc^2+a^2bc-bc-ac-ab\right)=0\)(theo (1) thì đúng)

\(\RightarrowĐPCM\)

1 tháng 6 2018

từ giả thiết suy ra : 

a2b  - a3bc - b2c + ab2c2 = ab2 - ab3c - a2c + a2bc2

\(\Rightarrow\)ab ( a - b ) + c ( a2 - b2 ) = abc2 ( a - b ) + abc ( a2 - b2 )

\(\Rightarrow\)( a - b ) ( ab + ac + bc ) = abc ( a - b ) ( c + a + b )

chia 2 vế cho abc ( a - b ) \(\ne\)

26 tháng 3 2016

Chịu bài này rồi!

26 tháng 3 2016

mk mới hk lp 6 , bài này bó tay ko giải đc

26 tháng 12 2018

cậu thử biến đổi tương xem thế nào....

26 tháng 12 2018

khó thế