Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^3+b^3+c^3=3abc=>a^3+b^3+c^3-3abc=0\)
\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(=>\left[\left(a+b\right)^3+c^3\right]-3a^2b-3ab^2-3abc=0\)
\(=>\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)=0\)
\(=>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Vì a3+b3+c3=3abc và a+b+c khác 0
=>\(a^2+b^2+c^2-ab-bc-ca=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm = 0 <=> chúng đều = 0
\(< =>\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>a=b=c}\)
Vậy \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)
\(\)
Ta có ; \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Vì \(a+b+c\ne0\) nên ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
a) Thay a = b = c vào biểu thức được : \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
b) Thay a = b = c vào P : \(P=\frac{2}{a}.\frac{2}{b}\frac{2}{c}=\frac{8}{abc}\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow x+y+z=0\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
=> ĐPCM
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
từ giả thiết => \(ab+bc+ca=0\)
do đó \(\frac{ab+bc+ca}{abc}=0\) => \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
ta chứng minh bài toán pụ sau
nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+3ab\left(a+b\right)+c^2-3abc-3ab\left(a+b\right)=0\)
<=> \(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\) ( luôn đúng vì a+b+c=0)
Áp dụng ta có với \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) => \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\) (ĐPCM)
đặt x=a-b;y=b-c;z=c-a
ta có x+y+z=0
nên ta có ĐPCM
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
<=> \(2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)
<=> \(\frac{z}{xyz}+\frac{y}{xyz}+\frac{x}{xyz}=0\)
<=> \(\frac{x+y+z}{xyz}=0\) (luôn đúng )
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\frac{1}{bc}+2\frac{1}{ac}\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
\(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=0\\ 2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\)
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=0\\ \frac{abc^2+a^2bc+ab^2c}{a^2b^2c^2}=0\)
\(abc^2+a^2bc+ab^2c=0\\ abc\left(c+a+b\right)=0\)
\(a+b+c=0\)(DPCM)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\frac{yz+xz+xy}{xyz}=0\)
yz + xz + xy = 0
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)
a) Từ giả thiết suy ra: xy + yz + zx = 0
Do đó:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)
Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra điều phải chứng minh
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
Đề bị nhầm hay sao ý? Cậu ktra lại nhé
ko nhàm đâu