K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

bạn ơi .. bạn thiếu mất cái mũi tên rồi 

9 tháng 8 2019

Vì O là tâm của ngũ giác abcde nên O cũng là trọng tâm của ngũ giác nên vecto oa+ob+oc+od+oe=0

12 tháng 6 2019

Chọn C.

Các vecto cùng phương với  có điểm đầu và điểm cuối là các đỉnh của lục giác

NV
17 tháng 9 2021

\(T=\left|\overrightarrow{DF}\right|=\left|\overrightarrow{DE}+\overrightarrow{EF}\right|\Rightarrow T^2=DE^2+EF^2+\overrightarrow{DE}.\overrightarrow{EF}\)

\(=a^2+a^2+a.a.cos60^0=3a^2\)

\(\Rightarrow\left|\overrightarrow{DF}\right|=a\sqrt{3}\)

\(AC=FD\Rightarrow\left|\overrightarrow{AC}\right|=a\sqrt{3}\)

\(P=\left|\overrightarrow{AI}\right|=\left|\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AC}\right|\Rightarrow P^2=\dfrac{1}{4}\left(AD^2+AC^2+2\overrightarrow{AD}.\overrightarrow{AC}\right)\)

\(=\dfrac{1}{4}\left(4a^2+3a^2+2.2a.a\sqrt{3}.cos30^0\right)=\dfrac{11}{2}a^2\)

\(\Rightarrow\left|\overrightarrow{AI}\right|=\dfrac{a\sqrt{22}}{2}\)

NV
17 tháng 9 2021

undefined

19 tháng 11 2023

Số vecto khác vecto 0, có điểm đầu điểm cuối lấy từ 7 điểm A,B,C,D,E,F,O là:

\(A^2_7=7\cdot6=42\left(vecto\right)\)

23 tháng 9 2017

(*) mk mới hok dạng toán này trên mạng ; nên lm thử thôi nha bn

hình :

A B C D F E O

a) ta có : \(VT=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}\)

\(=\overrightarrow{OA}+\overrightarrow{EO}+\overrightarrow{OC}+\overrightarrow{AO}+\overrightarrow{OE}+\overrightarrow{CO}\)

\(=\left(\overrightarrow{AO}+\overrightarrow{OA}\right)+\left(\overrightarrow{CO}+\overrightarrow{OC}\right)+\left(\overrightarrow{EO}+\overrightarrow{OE}\right)\)

\(=\overrightarrow{AA}+\widehat{CC}+\overrightarrow{EE}=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}=VP\left(đpcm\right)\)

b) ta có : \(VT=\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OE}=\overrightarrow{FO}+\overrightarrow{OE}-\overrightarrow{AO}\)

\(=\overrightarrow{FE}-\overrightarrow{FE}=\overrightarrow{EE}=\overrightarrow{0}=VP\left(đpcm\right)\)

c) ta có : \(VT=\overrightarrow{AB}+\overrightarrow{AO}+\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{AF}+\overrightarrow{FE}\)

\(=\overrightarrow{AB}+\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AD}=VP\left(đpcm\right)\)

d) ta có : \(VT=\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{MF}+\overrightarrow{FE}\)

\(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}\right)\)

\(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{FE}+\overrightarrow{EO}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}+\overrightarrow{FO}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}-\overrightarrow{OF}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\left(\overrightarrow{BA}-\overrightarrow{BA}\right)\) \(=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\overrightarrow{AA}=\left(\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\right)+\overrightarrow{0}\) \(=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}=VP\left(đpcm\right)\)

24 tháng 9 2017

Siêu quá, giải được toán 10 luôn!

Bái phục!

11 tháng 3 2017

Do ABCDEF là lục giác đều  tâm O nên AB = BC = CD= DE = EF = FA =  OC.

Trên hình có tất cả 12 đoạn thẳng bằng nhau và bằng OC, tạo thành 24 vectơ có độ dài bằng OC. Trừ ra vectơ O C → còn lại 23 vectơ.

Chọn D.

a: \(\overrightarrow{OA}=\overrightarrow{DO}=\overrightarrow{CB}=\overrightarrow{EF}\)

\(\overrightarrow{AB}=\overrightarrow{ED}=\overrightarrow{FO}=\overrightarrow{OC}\)