Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Đặt A= \(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)
A= \(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\left(1+1+1+...+1\right)\) (99 chữ số 1)
A= \(\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
A= \(\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+1\)
A= \(100.\left(\dfrac{1}{99}+\dfrac{1}{98}+...+\dfrac{1}{2}+\dfrac{1}{100}\right)\)
⇒ M= \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}\)
M= \(\dfrac{100.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
M= 100 (1)
+) Đặt B= \(92-\dfrac{1}{9}-\dfrac{2}{10}-...-\dfrac{92}{100}\)
B= \(\left(1+1+1+...+1\right)-\dfrac{1}{9}-\dfrac{2}{10}-...-\dfrac{92}{100}\) ( 92 chữ số 1)
B= \(\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\)
B= \(\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\)
B= \(8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
⇒ N= \(\dfrac{8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\)
N= 8 (2)
Từ (1) và (2)⇒ \(\dfrac{M}{N}\) = \(\dfrac{100}{8}\)= \(\dfrac{25}{2}\)
Vậy \(\dfrac{M}{N}=\dfrac{25}{2}\)
Đặt : \(B=\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
\(B=\left(\dfrac{99}{1}+1\right)+\left(\dfrac{98}{2}+1\right)+...+\left(\dfrac{1}{99}+1\right)-99\)
\(B=\dfrac{100}{1}+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}-99\)
\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\left(100-99\right)\)
\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\dfrac{100}{100}\)
\(B=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)
Ta có : \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)
Đặt vế đầu là A, vế sau là B.
Vế A:
- Tử:
\(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)
\(=100\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+...+\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{100}\right)\)
\(=100\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{98}+\dfrac{1}{99}+\dfrac{1}{100}\right)\)
Vậy:
\(A=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\\ =\dfrac{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+..+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\\ \Rightarrow A=50\)
Vế B:
- Tử:
\(92-\dfrac{1}{9}-\dfrac{1}{10}-...-\dfrac{92}{100}\\ =\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\\ =\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\\ =\dfrac{40}{45}+\dfrac{40}{50}+...+\dfrac{40}{500}\\ =40\left(\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}\right)\)
Vậy:
\(B=\dfrac{92-\dfrac{1}{9}-\dfrac{1}{10}-...-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\\ =\dfrac{40\left(\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}\right)}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{500}}\\ \Rightarrow B=40\)
Từ 2 vế trên ta tính được \(\dfrac{A}{B}=\dfrac{50}{40}=\dfrac{5}{4}\)
Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:
a) \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{1}{1.2}\\\dfrac{1}{6}=\dfrac{1}{2.3}\\\dfrac{1}{12}=\dfrac{1}{3.4}\\...\end{matrix}\right.\)
Vậy số thứ 100 của dãy là: \(\dfrac{1}{100.101}=\dfrac{1}{10100}\)
Tổng: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{6}=\dfrac{1}{\left(5.0+1\right)\left(5.1+1\right)}\\\dfrac{1}{66}=\dfrac{1}{\left(5.1+1\right)\left(5.2+1\right)}\\\dfrac{1}{176}=\dfrac{1}{\left(5.2+1\right)\left(5.3+1\right)}\\...\end{matrix}\right.\)
Vậy số thứ 100 của dãy là: \(\dfrac{1}{\left(5.99+1\right)\left(5.100+1\right)}=\dfrac{1}{248496}\)
Tổng: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)
\(=\dfrac{1}{5}\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{496.501}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{496}-\dfrac{1}{501}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)
\(=\dfrac{1}{5}.\dfrac{500}{501}\)
\(=\dfrac{100}{501}\)
Bài 2: Tính:
a) \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)
\(A=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)
\(A=\dfrac{\dfrac{100}{1.99}+\dfrac{100}{3.97}+\dfrac{100}{5.95}+...+\dfrac{100}{49.51}}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)
\(A=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)
\(\Rightarrow A=\dfrac{100}{2}=50\)